x86 Assembly

Suffixes
z - zword; 512-bits
u - upper-word; yword or zword
y- yword; 256-bits
h - half-word; qword, oword, or yword
o - oword; 128-bits
f - fourth-word; dword, qword, or oword
n - normal-word; oword, yword, or zword
X - xword; oword or yword
t - ten-bytes; 80-bit float-point
q - quadword; 64-bits
| - longword/doubleword; 32-bit integer or 64-bit float-point
w - word; 16-bits
e - eighth-word; word, dword, or qword
s - short; 16-bit integer or 32-bit float-point

Properties
Little-endian
Register-memory CISC
Status register branching
Last In First Out (LIFO) Stack

Ports

0x20-0x21 - Control/mask ports of the master PIC

0xa0-0xa1 - Control/mask ports of the slave PIC

0x60 - Data port from the keyboard controller

0x64 - Command port for keyboard controller (enable/disable kbd
interrupts)

b - byte; 8-bits
Datatypes
TYPE 63 6231 30 15 14 7 6 4 3 0
Signed Byte sign integer
Signed Word sign integer
Signed Dword sign integer
Signed Qword | sign integer
Unsigned Byte integer
Unsigned Word integer
Unsigned Dword integer
Unsigned Qword integer
BCD BCD
Packed BCD BCD
Word Integer sign integer
Short Integer sign integer
Long Integer sign integer
TYPE 79 78 64 63 62 52 51 31 30 23 22 15 14 10 9 O
Half Real sign exp fraction
Single Real sign exp fraction
Double sign exp fraction
Extended Real | sign exp int fraction

TYPE 127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0
MMX Packed Word word word word word
MMX Packed Dword dword dword
MMX Qword qword
MMX Packed Word word word word word word word word word
MMX Packed Dword dword dword dword dword
MMX Qword qword qword
SSE Scalar Single FP reserved FP
SSE Packed Single FP FP FP FP FP
SEE2 Scalar Double FP reserved double
SSE2 Packed Double FP double double
F16C Packed Half FP Half FP | Half FP  Half FP | Half FP
F16C Packed Half FP Half FP Half FP  Half FP | Half FP | Half FP  Half FP = Half FP | Half FP

Created by Devyn Collier Johnson <DevynCJohnson@Gmail.com> (2017) More cheatsheets at DCJTech.info



x86 Assembly

TYPE 512 480 4 4 4 4 4 3 3 3 3 3 3 2 2 2 2 2 21 11 1 1 127 96 95 64 63 32 31 0
74 411 8 8 5 5 21 8 8 55 2 2 9 9 6 5 2
9 8 7 6 54 3 2109 8 7 6 543 210 9 8
AVX Packed Dword dword dword dword dword = dword dword  dword | dword
AVX Packed Qword qword qword qword qword
AVX Scalar Single FP reserved FP
AVX Scalar Double FP reserved double
AVX Packed Single FP FP FP FP FP FP FP FP FP
AVX Packed Double FP double double double double
MVEX Scalar Single FP reserved FP
MVEX Scalar Double FP reserved double
MVEX Packed Single FP FP FP FP FP | FP  FP FP FP FP FP | FP | FP FP FP FP FP
MVEX Packed Double FP double double double double double double double double
NOTE: MVEX and EVEX datatypes are the same
Condition Codes
Code Bit3 Bit2 Bit1 Bit0 Condition
(o} 0 0 0 0 overflow
NO 0 0 0 1 no overflow
B (NAE, C) 0 0 1 0 below (not above or equal, carry)
NB (AE, NC) 0 0 1 1 not below (above or equal, no carry)
E (Z) 0 1 0 0 equal (zero)
NE (N2) 0 1 0 1 not equal (not zero)
NA (BE) 0 1 1 0 not above (below or equal)
A (NBE) 0 1 1 1 above (not below or equal)
S 1 0 0 0 sign
NS 1 0 0 1 no sign
P (PE) 1 0 1 0 parity (parity even)
NP (PO) 1 0 1 1 no parity (parity odd)
L (NGE) 1 1 0 0 less than (not greater than or equal)
NL (GE) 1 1 0 1 not less than (greater than or equal)
NG (LE) 1 1 1 0 not greater than (less than or equal)
G (NLE) 1 1 1 1 greater than (not less than or equal)
Registers
Bounds Registers Config and Status Registers
128-bit registers; *  BNDCFGS - EN (bit 0), BPRV (bit 1), BD_BASE (bits 12-63)
64 MSBs for upper-bound,; » BNDCFGU - EN (bit 0), BPRV (bit 1), BD_BASE (bits 12-63)
64 LSBs for lower-bound; BNDO, BND1, BND2, BND3 +  BNDSTATUS - EC (bits 0-1), BDE_ADDRESS (bits 2-63)

Control Registers
Control registers change or control the general behavior of the CPU, co-processor, or other digital device. Behaviors include interrupts, addressing mode,
paging, and more.
« CRO
0 (PE) - Protected Mode Enabled; If 1, then system is in protected mode, else the system is in real mode
1 (MP) - Monitor co-processor; Controls interaction of WAIT/FWAIT instructions with TS flag in CRO
2 (EM) - Emulation; If set, no x87 floating point unit present, if clear, x87 FPU present
3 (TS) - Task Switched; Allows saving x87 task context upon a task switch only after x87 instruction used
4 (ET) - Extension Type; On the 386, specify whether the external math co-processor IS an 80287 or 80387
5 (NE) - Numeric Error; Enable internal x87 floating point error reporting when set, else enables PC style x87 error detection
16 (WP) - Write Protect; When set, the CPU can not write to read-only pages when privilege level is 0
18 (AM) - Alignment mask; Alignment check enabled if AM set, AC flag (in EFLAGS register) set, and privilege level is 3
29 (NW) - Not-write through; Globally enables/disable write-through caching
30 (CD) - Cache Disable; Globally enables/disable the memory cache
31 (PG) - Paging; If 1, enable paging and use the CR3 register, else disable paging
CR1 - Reserved

Created by Devyn Collier Johnson <DevynCJohnson@Gmail.com> (2017) More cheatsheets at DCJTech.info



x86 Assembly

* CR2 - Page Fault Linear Address (PFLA); When a page fault occurs, the address the program attempted to access is stored in the CR2 register.

« CR3 (PDBR) - Page Directory Base Register (Upper 20 bits). Used when virtual addressing is enabled to translate linear addresses into physical
addresses by locating the page directory and page tables for the current task

* CR4 - Used in protected mode to control operations such as virtual-8086 support, enabling I/O breakpoints, page size extension and machine check

exceptions.

. 0 (VME) - Virtual 8086 Mode Extensions; If set, enables support for the virtual interrupt flag (VIF) in virtual-8086 mode

. 1 (PVI) - Protected-mode Virtual Interrupts; If set, enables support for the virtual interrupt flag (VIF) in protected mode

. 2 (TSD) - Time Stamp Disable; If set, RDTSC instruction can only be executed when in ring 0, otherwise RDTSC can be used at any privilege
level

. 3 (DE) - Debugging Extensions; If set, enables debug register based breaks on I/O space access

. 4 (PSE) - Page Size Extension; If unset, page size is 4 KiB, else page size is increased to 4 MiB (or 2 MiB with PAE set)

. 5 (PAE) - Physical Address Extension; If set, changes page table layout to translate 32-bit virtual addresses into extended 36-bit physical
addresses

6 (MCE) - Machine Check Exception; If set, enables machine check interrupts to occur
7 (PGE) - Page Global Enabled; If set, address translations (PDE or PTE records) may be shared between address spaces
8 (PCE) - Performance-Monitoring Counter enable; If set, RDPMC can be executed at any privilege level, else RDPMC can only be used in ring 0
9 (OSFXSR) - Operating system support for FXSAVE and FXRSTOR instructions; If set, enables SSE instructions and fast FPU save & restore
10 (OSXMMEXCPT) - Operating System Support for Unmasked SIMD Floating-Point Exceptions; If set, enables unmasked SSE exceptions
13 (VMXE) - Virtual Machine Extensions Enable
14 (SMXE) - Safer Mode Extensions Enable; Trusted Execution Technology (TXT)
16 (FSGSBASE) - Enables the instructions RDFSBASE, RDGSBASE, WRFSBASE, and WRGSBASE
17 (PCIDE) - PCID Enable; If set, enables process-context identifiers (PCIDs)
18 (OSXSAVE) - XSAVE and Processor Extended States Enable
20 (SMEP) - Supervisor Mode Execution Protection Enable; If set, execution of code in a higher ring generates a fault
21 (SMAP) - Supervisor Mode Access Protection Enable; If set, access of data in a higher ring generates a fault
22 (PKE) - Protection Key Enable
EFER (MSR 0xC0000080) - Extended Feature Enable Register; x86-64 only
0 (SCE) - System Call Extensions
8 (LME) - Long Mode Enable
10 (LMA) - Long Mode Active
11 (NXE) - No-Execute Enable
12 (SVME) - Secure Virtual Machine Enable
13 (LMSLE) - Long Mode Segment Limit Enable
14 (FFXSR) - Fast FXSAVE/FXRSTOR
15 (TCE) - Translation Cache Extension
CR5-CR?7 - Reserved
CR8 (TPR) - Task-Priority Register; Prioritize external interrupts; x86-64 only
CR9-CR15 - Reserved

Debug Registers

Used for program debugging; only accessible at Privilege Level 0

« DRO0-DR3 - Contains a linear address associated with one of four breakpoint conditions; Each breakpoint condition is further defined by bits in DR7

* DR4 - Alias for DR6

* DRS5 - Alias for DR7

« DRG6 - The debug status register permits the debugger to determine which debug conditions have occurred. When the processor detects an enabled
debug exception, it sets the low-order bits of this register (0,1,2,3) before entering the debug exception handler. Move zeros into this register after use
because this register never clears itself

* DR7 - The low-order eight bits of DR7 (0,2,4,6 and 1,3,5,7) selectively enable the four address breakpoint conditions. There are two levels of
enabling: the local (0,2,4,6) and global (1,3,5,7) levels. The local enable bits are automatically reset by the processor at every task switch to avoid
unwanted breakpoint conditions in the new task. The global enable bits are not reset by a task switch; therefore, they can be used for conditions that are
global to all tasks. Bits 16-17 (DRO), 20-21 (DR1), 24-25 (DR2), 28-29 (DR3), define when breakpoints trigger. Each breakpoint has a two-bit entry that
specifies whether they break on execution (00b), data write (01b), data read or write (11b). 10b is defined to mean break on |10 read or write but no
hardware supports it; for 64-bit mode, it has been re-purposed to specify an 8 byte wide breakpoint area. Bits 18-19 (DRO0), 22-23 (DR1), 26-27 (DR2),
30-31 (DR3), define how large an area of memory is watched by breakpoints. Again each breakpoint has a two-bit entry that specifies whether they watch
one (00b), two (01b), eight (10b) or four (11b) bytes.

* DR8-DR15 - Reserved

Fixed Range MTRRs (64-bits) Machine Check Architecture (64-bits)

MTRR_FIX_4K_E8000
MTRR_FIX_4K_F0000
MTRR_FIX_4K_F8000

FLAGS, EFLAGS, & RFLAGS Registers

* 0 (CF) - Carry Flag. Set if the last arithmetic operation carried (addition) or borrowed (subtraction) a bit beyond the size of the register. This is then checked when the
operation is followed with an add-with-carry or subtract-with-borrow to deal with values too large for just one register to contain

e 2 (PF) - Parity Flag. Set if the number of set bits in the least significant byte is a multiple of 2

¢ 4 (AF) - Adjust Flag. Carry of Binary Code Decimal (BCD) numbers arithmetic operations

«  MTRR_FIX_64K_00000 + MCG_CAP -
«  MTRR_FIX_16K_80000 «  MCG_STATUS - RIPV (bit 0), EIPV (bit 1), MCIP (bit 2), LMCES (bit 3)
«  MTRR_FIX_16K_A0000 +  MCG_CTL - reserved

«  MTRR_FIX_4K_C0000 «  MCG_EXT_CTL - LMCEEN (bit 0)

«  MTRR_FIX_4K_C8000

*  MTRR_FIX_4K_D0000 Machine Check Exception

* MTRR_FIX_4K_D8000 «  MCAR - 32-bits

*  MTRR_FIX_4K_E0000 «  MCTR - 32-bits; CHK (0), WR (1), DC (2), MIO (3), LCK (4)

Created by Devyn Collier Johnson <DevynCJohnson@Gmail.com> (2017) More cheatsheets at DCJTech.info



x86 Assembly

6 (ZF) - Zero Flag. Set if the result of an operation is Zero (0)
7 (SF) - Sign Flag. Set if the result of an operation is negative
8 (TF) - Trap Flag. Set if step by step debugging

9 (IF) - Interruption Flag. Set if interrupts are enabled

12-13 (IOPL) - I/O Privilege Level field. I/O Privilege Level of the current process

16 (RF) - Resume Flag. Response to debug exceptions
17 (VM) - Virtual-8086 Mode. Set if in 8086 compatibility mode

19 (VIF) - Virtual Interrupt Flag. Virtual image of IF

20 (VIP) - Virtual Interrupt Pending flag. Set if an interrupt is pending
21 (ID) - Identification Flag. Support for CPUID instruction if can be set
22-63 - NULL/VOID/Unassigned

General Purpose Registers
AL/AH/AXIEAX/RAX - Accumulator (add immediates and perform math)

BL/BH/BX/EBX/RBX - Base index (for use with arrays)
CL/CH/CX/ECX/RCX - Counter (for use with loops and strings)

DI/EDI/RDI - Destination index for string operations

R8-R15 - General 64-bit (quadword) registers
SI/ESI/RSI - Source index for string operations
SP/ESP/RSP - Stack pointer for top address of the stack

MCA Error-Reporting Register Banks (64-bits)

¢ MCn_CTL2 - Intel P6-core processors alias MCO_CTL to EBL_CR_POWERON
*«  MCn_STATUS -

* MCn_ADDR -

«  MCn_MISC -reserved

Memory Type Range Registers (MTRR)
MTRR_CAP - 64-bits

0-7 (VCNT) -

8 (FIX) -

10 (WC) -

11 (SMRR) -
MTRR_DEF_TYPE - 64-bits

0-7 (TYPE) -

10 (FE) -

11 (E) -

SMRRs

64-bit registers with the most-significant 32-bits reserved

*+  SMRR_PHYS_BASE - TYPE (bits 0-7); BASE (bits 12-31)
+  SMRR_PHYS_MASK -V (bit 11); MASK (bits 12-31)

Segment Registers

Segment registers are 128-bits. However, only the MSB 16 bits can be used (called
the segment selector). The rest are used as an "internal descriptor cache". 16 bits of
this cache is used for "access rights", 32 bits for "limit", and either 32 or 64 bits for
"base".

Stack Segment (SS) - Pointer to the stack

Code Segment (CS) - Pointer to the code

Data Segment (DS) - Pointer to the data

Extra Segment (ES) - Pointer to extra data

F Segment (FS) - Pointer to extra data #2

G Segment (GS) - Pointer to extra data #3

Table Registers

Defines memory segments and ensures protection mode operations.

*« GDTR - Global Descriptor Table Register; Stores the size and memory location
of the GDT

« IDTR - Interrupt Descriptor Table Register; Interrupt vector table; The IDT is used
by the processor to determine the correct response to interrupts and exceptions

¢« LDTR - Local Descriptor Table Register; Stores the characteristics of the local
memory segments

< TR -Table Register

512-bits | 256-bits 128-bits 79-bits | 78-bits 64-bits (qword)  32-bits (longword) 16-bits (word)

18 (AC) - Alignment Check. Set if alignment checking of memory references is done

10 (DF) - Direction Flag. Stream direction. If set, string operations will decrement their pointer rather than incrementing it, reading memory backwards
11 (OF) - Overflow Flag. Set if signed arithmetic operations result in a value too large for the register to contain

14 (NT) - Nested Task flag. Controls chaining of interrupts. Set if the current process is linked to the next process

DL/DH/DX/EDX/RDX - Extend the precision of the accumulator (combine EAX and EDX for 64-bit integer operations)
BP/EBP/RBP - Stack base pointer for holding the address of the current stack frame

IP/EIP/RIP - Instruction pointer (holds the program counter and the current instruction address)

MCA Extended State Registers

64-bit registers; MCG_rAX, MCG_rBX, MCG_rCX, MCG_rDX, MCG_rS|, MCG_DI,
MCG_rBP, MCG_rSP, MCG_rFLAGS, MCG_rlP, MCG_MISC, MCG_RESx (128-bit),
MCG_R8-MCG_R15.

Page Attribute Table (PAT)
0-2 (PAO) -

3-7 (reserved) -
8-10 (PA1) -
11-15 (reserved) -
16-18 (PA2) -
19-23 (reserved) -
24-26 (PA3) -
27-31 (reserved) -
32-34 (PA4) -
35-39 (reserved) -
40-42 (PA5) -
43-47 (reserved) -
48-50 (PAG6) -
51-55 (reserved) -
56-58 (PA7) -
59-63 (reserved) -

Test Registers

Used to perform self-tests; 80486 only;

¢ TRO-TRS5 - Undocumented Test Registers
* TR6 - Test commands

* TR7 - Test data

Time Stamp Counter (MSR)
* TSC - Time Stamp Counter

* TSC_ADJUST - Adjust TSC

* TSC_AUX - Processor ID (32-bits)

*  MPERF - Maximum clock frequency
* APERF - Actual clock frequency

Variable Range MTRRs

64-bit registers
MTRR_PHYS_BASE_n
MTRR_PHYS_MASK_n

8-bits (LSB)
General Purpose Registers (GPR)
Accumulator
RAX || RO EAX || ROD AH AL
AX

Created by Devyn Collier Johnson <DevynCJohnson@Gmail.com> (2017) More cheatsheets at DCJTech.info



x86 Assembly

512-bits | 256-bits  128-bits 79-bits | 78-bits 64-bits (qword) 32-bits (longword) 16-bits (word) 8-bits (LSB)

Base Index
RBX || R3 EBX || R3D BH BL
BX
Counter Index
RCX || R1 ECX || R1D CH cL
CX
Data Register
RDX || R2 EDX || R2D DH DL
DX
Destination Index
RDI || R7 EDI || R7D DI
Instruction Pointer
RIP EIP IP
Registers (R8-R15)
R* R*D R*W R*B
Source Index
RSI || R6 ESI || R6D Sl
Stack Base Pointer
RBP || R5 EBP || R5D BP BPL (64-bit mode only)

Stack Pointer

RSP || R4 ESP || R4D sP SPL (64-bit mode only)
Segment Registers (C,D, E, F, G, S)

*S
Mask Registers
KO-K7
Debug Registers
DRO-DR15
Control Registers
MSW
CRO
CR1-CR2
CR3 (32-bit)
CR3 (64-bit)
CR4
CR5-CR7
CR8 TPR (4-bits)
CR9-CR15
Model Specific Registers (MSRs)
Time Stamp Counter
TsC
TSC_ADJUST
reserved TSC_AUX
MPERF
APERF
SMM-Related Internal Registers
SMBASE

Created by Devyn Collier Johnson <DevynCJohnson@Gmail.com> (2017) More cheatsheets at DCJTech.info



x86 Assembly

512-bits | 256-bits  128-bits 79-bits | 78-bits 64-bits (qword) 32-bits (longword) 16-bits (word) 8-bits (LSB)
IORESTARTRIP

IORESTARTRCX
IORESTARTRSI
IORESTARTRDI
Miscellaneous MSRs
MISC_CTL
MISC_ENABLE
EFER
ignored scratch SEP_SEL
ignored SEP_ESP
SEP_RSP
ignored SEP_EIP
SEP_RIP
STAR
LSTAR
CSTAR
reserved FMASK
FS_BAS
GS_BAS
KERNEL_GS_BAS
APIC_BASE
BNDCFGS
XSS
FP/MMX/3DNow! Registers
sign exp STO-ST7 || MMO-MM? || MMX0-MMX7 || FPRO-FPR7
SSE Vector FP Registers
XMMO-XMM7
YMMO-YMM7
ZMMO-ZMM7
SSE2 Vector FP Registers
XMM8-XMM15
YMM8-YMM15
ZMM8-ZMM15

AVX Vector FP Registers (MVEX)
ZMM16-ZMM31

EVEX Vector FP Registers
XMM16-XMM31
YMM16-YMM31
ZMM16-ZMM31
512-bits 256-bits 128-bits  79-bits | 78-bits 64-bits (qword) 32-bits (longword) 16-bits (word) 8-bits (LSB)

Branching and Conditionals

Mnemonic Description
BOUND Array index in source register is checked against upper and lower bounds in memory source. The first word located at "limit" is the lower boundary and
the word at "limit+2" is the upper array bound. Interrupt 5 occurs if the source value is less than or higher than the source.

BT
BTC

The destination bit indexed by the source value is copied into the Carry Flag.

The destination bit indexed by the source value is copied into the Carry Flag after being complimented (inverted).

Created by Devyn Collier Johnson <DevynCJohnson@Gmail.com> (2017) More cheatsheets at DCJTech.info



x86 Assembly

BTR The destination bit indexed by the source value is copied into the Carry Flag and then cleared in the destination.
BTS The destination bit indexed by the source value is copied into the Carry Flag and then set in the destination.
CALL Pushes Instruction Pointer (and Code Segment for far calls) onto stack and loads Instruction Pointer with the address of the procedure.
CMOVcc Conditional move; CMOVA, CMOVAE, CMOVB, CMOVBE, CMOVC, CMOVE, CMOVG, CMOVGE, CMOVL, CMOVLE, CMOVNA, CMOVNAE,
CMOVNB, CMOVNBE, CMOVNC, CMOVNE, CMOVNG, CMOVNGE, CMOVNL, CMOVNLE, CMOVNO, CMOVNP, CMOVNS, CMOVNZ, CMOVO,
CMOVP, CMOVPE, CMOVPO, CMOVS, CMOVZ
CMP Subtracts source from destination and updates the flags but does not save result. Flags can subsequently be checked for conditions. Modified: AF, CF,
OF, PF, SF, ZF
CMPS Subtracts destination value from source without saving results. Updates flags based on the subtraction and the index registers (E)SI and (E)DI are
incremented or decremented depending on the state of the Direction Flag. CMPSB inc/decrements the index registers by 1, CMPSW inc/decrements by
2, while CMPSD increments or decrements by 4. Modified: AF, CF, OF, PF, SF, ZF
CMPSQ CoMPare String Quadword
CMPXCHG Compares the accumulator with "dest". If equal the "dest" is loaded with "src", otherwise the accumulator is loaded with "dest". Modified: AF, CF, OF,
PF, SF, ZF
CMPXCHG16B CoMPare and eXCHanGe 16 Bytes
ENTER Modifies stack for entry to procedure for high level language. Operand "locals" specifies the amount of storage to be allocated on the stack. "Level"
specifies the nesting level of the routine. Paired with the LEAVE instruction, this is an efficient method of entry and exit to procedures.
ESC Provides access to the data bus for other resident processors. The CPU treats it as a NOP but places memory operand on bus.
HLT Halts CPU until RESET line is activated, NMI or maskable interrupt received. The CPU becomes dormant but retains the current CS:IP for later restart.
ICEBP ICE BreakPoint; An undocumented op code that will make debugging run-time code on an ICE easier
INT Initiates a software interrupt by pushing the flags, clearing the Trap and Interrupt Flags, pushing CS followed by IP and loading CS:IP with the value
found in the interrupt vector table. Execution then begins at the location addressed by the new CS:IP. Modified: IF, TF
INTO If the Overflow Flag is set this instruction generates an INT 4 which causes the code addressed by 0000:0010 to be executed. Modified: IF, TF
IRET Returns control to point of interruption by popping IP, CS and then the Flags from the stack and continues execution at this location. CPU exception
interrupts will return to the instruction that cause the exception because the CS:IP placed on the stack during the interrupt is the address of the offending
instruction. Modified: AF, CF, DF, IF, PF, SF, TF, ZF
IRETQ 64-bit Return from Interrupt
JA Jump if Above; CF=0 and ZF=0
JAE Jump if Above or Equal; CF=0
JB Jump if Below; CF=1
JBE Jump if Below or Equal; CF=1 or ZF=1
JC Jump if Carry; CF=1
JCXZ Jump if CX Zero;CX=0
JE Jump if Equal; ZF=1
JG Jump if Greater (signed); ZF=0 and SF=OF
JGE Jump if Greater or Equal (signed); SF=OF
JL Jump if Less (signed); SF = OF
JLE Jump if Less or Equal (signed); ZF=1 or SF != OF
JMP Unconditional Jump
JNA Jump if Not Above; CF=1 or ZF=1
JNAE Jump if Not Above or Equal; CF=1
JNB Jump if Not Below; CF=0
JNBE Jump if Not Below or Equal; CF=0 and ZF=0
JNC Jump if Not Carry; CF=0
JNE Jump if Not Equal; ZF=0
JNG Jump if Not Greater (signed); ZF=1 or SF != OF
JNGE Jump if Not Greater or Equal (signed); SF != OF
JNL Jump if Not Less (signed); SF=OF
JNLE Jump if Not Less or Equal (signed); ZF=0 and SF=OF
JNO Jump if Not Overflow (signed); OF=0
JNP Jump if No Parity; PF=0
JNS Jump if Not Signed (signed); SF=0
JNZ Jump if Not Zero; ZF=0
JO Jump if Overflow (signed); OF=1

Created by Devyn Collier Johnson <DevynCJohnson@Gmail.com> (2017) More cheatsheets at DCJTech.info



x86 Assembly

JP Jump if Parity; PF=1
JPE Jump if Parity Even; PF=1
JPO Jump if Parity Odd; PF=0
JRCXZ Jump if RCX is zero
JS Jump if Signed (signed); SF=1
Jz Jump if Zero; ZF=1
LEAVE Releases the local variables created by the previous ENTER instruction_ bty rl_estgring SP and BP to their condition before the procedure stack frame was
initialized.
LOCK This instruction is a prefix that causes the CPU assert bus lock signal during the execution of the next instruction. Used to avoid two processors from
updating the same data location. The 286 always asserts lock during an XCHG with memory operands. This should only be used to lock the bus prior to
XCHG, MOV, IN and OUT instructions.
LOOP Decrements CX by 1 and transfers control to "label" if CX is not Zero. The "label" operand must be within -128 or 127 bytes of the instruction following
the loop instruction.
LOOPE/LOOPZ Decrements CX by 1 (without modifying the flags) and transfers control to "label" if CX != 0 and the Zero Flag is set. The "label" operand must be within
-128 or 127 bytes of the instruction following the loop instruction.
LOOPNZ/LOOPNE Decrements CX by 1 (without modifying the flags) and transfers control to "label" if CX != 0 and the Zero Flag is clear. The "label" operand must be
within -128 or 127 bytes of the instruction following the loop instruction.
MONITOR Setup Monitor Address; Sets up a linear address range to be monitored by hardware and activates the monitor. SSE3
MWAIT Monitor Wait; Hint to stop instruction execution and enter an implementation-dependent optimized state until occurrence of a class of events. SSE3
NOP Do nothing
PAUSE Provides a hint to the processor that the following code is a spin loop; used for cacheability
REP Repeats execution of string instructions while CX != 0. After each string operation, CX is decremented and the Zero Flag is tested.
REPE/REPZ Repeats execution of string instructions while CX != 0 and the Zero Flag is set. CX is decremented and the Zero Flag tested after each string operation.
REPNE/REPNZ Repeats execution of string instructions while CX != 0 and the Zero Flag is clear. CX is decremented and the Zero Flag tested after each string
operation.
RET/RETF/RETN Transfers control from a procedure back to the instruction address saved on the stack. "num_bytes" is an optional number of bytes to release. Far
returns pop the IP followed by the CS, while near returns pop only the IP register.
RSM This was introduced by the i386SL and later and is also in the i486SL and later. Resumes from System Management Mode (SMM).
SCAS Compares value at ES:DI (even if operand is specified) from the accumulator and sets the flags similar to a subtraction. DI is incremented/decremented
based on the instruction format (or operand size) and the state of the Direction Flag. Modified: AF, CF, OF, PF, SF, ZF
SETAE/SETNB Sets the byte in the operand to 1 if the Carry Flag is clear otherwise sets the operand to 0.
SETB/SETNAE Sets the byte in the operand to 1 if the Carry Flag is set otherwise sets the operand to 0.
SETBE/SETNA Sets the byte in the operand to 1 if the Carry Flag or the Zero Flag is set, otherwise sets the operand to 0.
SETE/SETZ Sets the byte in the operand to 1 if the Zero Flag is set, otherwise sets the operand to 0.
SETNE/SETNZ Sets the byte in the operand to 1 if the Zero Flag is clear, otherwise sets the operand to 0.
SETL/SETNGE Set if Less / Set if Not Greater or Equal
SETGE/SETNL Sets the byte in the operand to 1 if the Sign Flag equals the Overflow Flag, otherwise sets the operand to 0.
SETLE/SETNG Sets the byte in the operand to 1 if the Zero Flag is set or the Sign Flag is not equal to the Overflow Flag, otherwise sets the operand to 0.
SETG/SETNLE Sets the byte in the operand to 1 if the Zero Flag is clear or the Sign Flag equals to the Overflow Flag, otherwise sets the operand to 0.
SETS Sets the byte in the operand to 1 if the Sign Flag is set, otherwise sets the operand to 0.
SETNS Sets the byte in the operand to 1 if the Sign Flag is clear, otherwise sets the operand to 0.
SETC Sets the byte in the operand to 1 if the Carry Flag is set, otherwise sets the operand to 0.
SETNC Sets the byte in the operand to 1 if the Carry Flag is clear, otherwise sets the operand to 0.
SETO Sets the byte in the operand to 1 if the Overflow Flag is set, otherwise sets the operand to 0.
SETNO Sets the byte in the operand to 1 if the Overflow Flag is clear, otherwise sets the operand to 0.
SETP/SETPE Sets the byte in the operand to 1 if the Parity Flag is set, otherwise sets the operand to 0.
SETNP/SETPO Sets the byte in the operand to 1 if the Parity Flag is clear, otherwise sets the operand to 0.
STI Sets the Interrupt Flag to 1, which enables recognition of all hardware interrupts. If an interrupt is generated by a hardware device, an End of Interrupt
(EOI) must also be issued to enable other hardware interrupts of the same or lower priority.
TEST Performs a logical AND of the two operands updating the flags register without saving the result. Modified: AF, CF, OF, PF, SF, ZF
uD2 Undefined Instruction; Generates an invalid opcode. This instruction is provided for software testing to explicitly generate an invalid opcode. The opcode
for this instruction is reserved for this purpose.
VERR Verifies the specified segment selector is valid and is readable at the current privilege level. If the segment is readable, the Zero Flag is set, otherwise it

is cleared.

Created by Devyn Collier Johnson <DevynCJohnson@Gmail.com> (2017) More cheatsheets at DCJTech.info



x86 Assembly

VERW Verifies the specified segment selector is valid and is writable at the current privilege level. If the segment is writable, the Zero Flag is set, otherwise it is
cleared.
WAIT/FWAIT CPU enters wait state until the coprocessor signals it has finished its operation. This instruction is used to prevent the CPU from accessing memory that

may be temporarily in use by the coprocessor. WAIT and FWAIT are identical.

WBINVD Flushes internal cache, then signals the external cache to write back current data followed by a signal to flush the external cache.

Data Manipulation

Mnemonic Description
AAA ASCII adjust AL after addition; used when unpacked binary coded decimal; Modified: AF, CF, OF, PF, SF, ZF
AAD ASCII adjust AX before division; Modified: AF, CF, OF, PF, SF, ZF
AAM ASCII adjust AX after multiplication Modified: AF, CF, OF, PF, SF, ZF;
AAS ASCII adjust AL after subtraction; Modified: AF, CF, OF, PF, SF, ZF
ADC Add with carry; Modified: AF, CF, OF, PF, SF, ZF
ADD Add; Modified: AF, CF, OF, PF, SF, ZF
AND Logical AND; Modified: AF, CF, OF, PF, SF, ZF
ARPL Adjusted Requested Privilege Level of Selector; Compares the RPL bits of "dest" against "src". If the RPL bits of "dest" are less than "src", the destination
RPL bits are set equal to the source RPL bits and the Zero Flag is set. Otherwise the Zero Flag is cleared.

BSF Scans source operand for first bit set. Sets ZF if a bit is found set and loads the destination with an index to first set bit. Clears ZF if no bits are found set.
BSR Scans source operand for first bit set. Sets ZF if a bit is found set and loads the destination with an index to first set bit. Clears ZF if no bits are found set.
BSWAP Changes the byte order of a 32 bit register from big endian to little endian or vice versa. Result left in destination register is undefined if the operand is a 16

bit register.
CBW Convert byte in AL to a word in AX
cbQ Converts a signed dword in EAX to a signed quadword in EDX:EAX
CDQE Sign extend EAX into RAX
CLC Clear the carry bit
CLD Clear the direction flag
CLI Disables the maskable hardware interrupts by clearing the Interrupt flag. NMI's and software interrupts are not inhibited.
CLTS Clears the Task Switched Flag in the Machine Status Register. This is a privilﬁ_ged operation and is generally used only by operating system code. Modified:
CMC Toggle the carry flag; Modified: CF
cQo Sign extend RAX into RDX:RAX
CWD Extends sign of word in register AX throughout register DX forming a doubleword quantity in DX:AX.
CWDE Converts a signed word in AX to a signed doubleword in EAX by extending the sign bit of AX throughout EAX.
DAA Corrects result (in AL) of a previous BCD addition operation. Contents of ALZa'Ee changed to a pair of packed decimal digits. Modified: AF, CF, OF, PF, SF,
DAS Corrects result (in AL) of a previous BCD subtraction operation. Contents éJ'f:AIZ_Fare changed to a pair of packed decimal digits. Modified: AF, CF, OF, PF,
DEC Decrement; Modified: AF, OF, PF, SF, ZF
DIV Unsigned binary division; Modified: AF, CF, OF, PF, SF, ZF
IDIV Signed binary division; Modified: AF, CF, OF, PF, SF, ZF
IMUL Signed multiplication; Modified: AF, CF, OF, PF, SF, ZF
IN A byte, word or dword is read from "port" and placed in AL, AX or EAX respectively. If the port number is in the range of 0-255 it can be specified as an

immediate, otherwise the port number must be specified in DX. Valid port ranges on the PC are 0-1024, though values through 65535 may be specified and
recognized by third party vendors and PS/2's.

INC Increment; Modified: AF, OF, PF, SF, ZF
INS Loads data from port to the destination ES:(E)DI (even if a destination operand is supplied). (E)DI is adjusted by the size of the operand and increased if the
Direction Flag is cleared and decreased if the Direction Flag is set. For INSB, INSW, INSD no operands are allowed and the size is determined by the
mnemonic.
INVD Flushes CPU internal cache. Issues special function bus cycle which indicates to flush external caches. Data in write-back external caches is lost.
INVLPG Invalidates a single page table entry in the Translation Look-Aside Buffer.
MUL Unsigned multiply of the accumulator by the source. If "src" is a byte value, then AL is used as the other multiplicand and the result is placed in AX. If "src"

is a word value, then AX is multiplied by "src" and DX:AX receives the result. If "src" is a double word value, then EAX is multiplied by "src" and EDX:EAX
receives the result. Modified: AF, CF, OF, PF, SF, ZF

NEG Subtracts the destination from 0 and saves the 2s complement of "dest" back into "dest". Modified: AF, CF, OF, PF, SF, ZF

Created by Devyn Collier Johnson <DevynCJohnson@Gmail.com> (2017) More cheatsheets at DCJTech.info



x86 Assembly

NOT Inverts the bits of the "dest" operand forming the 1s complement.

OR Logical inclusive OR of the two operands returning the result in the destination. Modified: AF, CF, OF, PF, SF, ZF

RCL Rotates the bits in the destination to the left "count" times with all data pushed out the left side re-entering on the right. The Carry Flag holds the last bit
rotated out. Modified: CF, OF

RCR Rotates the bits in the destination to the right "count” times with all data pushed out the right side re-entering on the left. The Carry Flag holds the last bit
rotated out. Modified: CF, OF

ROL Rotates the bits in the destination to the left "count" times with all data pushed out the left side re-entering on the right. The Carry Flag will contain the value

of the last bit rotated out. Modified: CF, OF
ROR Rotates the bits in the destination to the right "count" times with all data pushed out the right side re-entering on the left. The Carry Flag will contain the
value of the last bit rotated out. Modified: CF, OF
SAL/SHL Shifts the destination left by "count” bits with zeros shifted in on right. The Carry Flag contains the last bit shifted out. Modified: AF, CF, OF, PF, SF, ZF
SAR Shifts the destination right by "count” bits with the current sign bit replicated in the leftmost bit. The Carry Flag contains the last bit shifted out. Modified: AF,
CF, OF, PF, SF, ZF
SBB Subtracts the source from the destination, and subtracts 1 extra if the Carry Flag is set. Results are returned in "dest". Modified: AF, CF, OF, PF, SF, ZF
SCASQ SCAn String Quadword
SHR Shifts the destination right by "count” bits with zeros shifted in on the left. The Carry Flag contains the last bit shifted out. Modified: AF, CF, OF, PF, SF, ZF
SHLD/SHRD SHLD shifts "dest" to the left "count" times and the bit positions opened are filled with the most significant bits of "src". SHRD shifts "dest" to the right

"count" times and the bit positions opened are filled with the least significant bits of the second operand. Only the 5 lower bits of "count" are used. Modified:
AF, CF, OF, PF, SF, ZF

STC Sets the Carry Flag to 1.

STD Sets the Direction Flag to 1 causing string instructions to auto-decrement Sl and DI instead of auto-increment.

suB The source is subtracted from the destination and the result is stored in the destination. Modified: AF, CF, OF, PF, SF, ZF
XADD Exchanges the first operand with the second operand, then loads the sum of the two values into the destination operand.
XOR Performs a bitwise exclusive OR of the operands and returns the result in the destination. Modified: AF, CF, OF, PF, SF, ZF

Data Transfer

Mnemonic Description
CLFLUSH Cache Line Flush; Invalidates the cache line that contains the linear address specified with the source operand from all levels of the processor cache
hierarchy
LAHF Copies flags AF, CF, PF, SF, and ZF into AH
LAR The high byte of the of the destination register is overwritten by the value of the access rights byte and the low order byte is zeroed depending on the

selection in the source operand. The Zero Flag is set if the load operation is successful.

LDS Loads 32-bit pointer from memory source to destination register and DS. The offset is placed in the destination register and the segment is placed in DS.
To use this instruction the word at the lower memory address must contain the offset and the word at the higher address must contain the segment. This
simplifies the loading of far pointers from the stack and the interrupt vector table.

LEA Transfers offset address of "src" to the destination register.

LES Loads 32-bit pointer from memory source to destination register and ES. The offset is placed in the destination register and the segment is placed in ES.
To use this instruction the word at the lower memory address must contain the offset and the word at the higher address must contain the segment. This
simplifies the loading of far pointers from the stack and the interrupt vector table.

LFENCE Load fence; Serializes load operations

LFS Loads 32-bit pointer from memory source to destination register and FS. The offset is placed in the destination register and the segment is placed in FS.
To use this instruction the word at the lower memory address must contain the offset and the word at the higher address must contain the segment. This
simplifies the loading of far pointers from the stack and the interrupt vector table.

LGDT Loads a value from an operand into the Global Descriptor Table (GDT) register.
LIDT Loads a value from an operand into the Interrupt Descriptor Table (IDT) register.
LGS Loads 32-bit pointer from memory source to destination register and GS. The offset is placed in the destination register and the segment is placed in GS.

To use this instruction the word at the lower memory address must contain the offset and the word at the higher address must contain the segment. This
simplifies the loading of far pointers from the stack and the interrupt vector table.

LLDT Loads a value from an operand into the Local Descriptor Table Register (LDTR).
LMSW Loads the Machine Status Word (MSW) from data found at "src".
LODS Transfers string element addressed by DS:SlI (even if an operand is supplied) to the accumulator. Sl is incremented based on the size of the operand or
based on the instruction used. If the Direction Flag is set Sl is decremented, if the Direction Flag is clear Sl is incremented. Use with REP prefixes.
LODSQ LOaD String Quadword
LSL Loads the segment limit of a selector into the destination register if the selector is valid and visible at the current privilege level. If loading is successful the

Zero Flag is set, otherwise it is cleared.

LSS Loads 32-bit pointer from memory source to destination register and SS. The offset is placed in the destination register and the segment is placed in SS.
To use this instruction the word at the lower memory address must contain the offset and the word at the higher address must contain the segment. This
simplifies the loading of far pointers from the stack and the interrupt vector table.

Created by Devyn Collier Johnson <DevynCJohnson@Gmail.com> (2017) More cheatsheets at DCJTech.info



x86 Assembly

LTR Loads the current task register with the value specified in "src".
MASKMOVDQU Masked Move of Double Quadword Unaligned; Stores selected bytes from the source operand (first operand) into a 128-bit memory location
MASKMOVQ Masked Move of Quadword; Selectively write bytes from MM1 to memory location using the byte mask in MM2
MFENCE Memory Fence; Performs a serializing operation on all load and store instructions that were issued prior the MFENCE instruction.
MOV Copies byte or word from the source operand to the destination operand.
MOVNTDQ Move Double Quadword Non-Temporal; Move double quadword from XMM to M128, minimizing pollution in the cache hierarchy.
MOVNTI Move Doubleword Non-Temporal; Move doubleword from r32 to m32, minimizing pollution in the cache hierarchy.
MOVNTPD Move Packed Double-Precision Floating-Point Values Non-Temporal; Move packed double-precision floating-point values from xmm to m128, minimizing
pollution in the cache hierarchy.
MOVNTPS Move Aligned Four Packed Single-FP Non Temporal; Move packed single-precision floating-point values from XMM to M128, minimizing pollution in the
cache hierarchy.
MOVNTQ Move Quadword Non-Temporal
MOVS Copies data from addressed by DS:SI (even if operands are given) to the location ES:DI destination and updates Sl and DI based on the size of the
operand or instruction used. Sl and DI are incremented when the Direction Flag is cleared and decremented when the Direction Flag is Set.
MOVSX Copies the value of the source operand to the destination register with the sign extended.
MOVSXD MOV with Sign Extend 32-bit to 64-bit
MOvzX Copies the value of the source operand to the destination register with the zeros extended.
ouT Transfers byte in AL,word in AX or dword in EAX to the specified hardware port address. If the port number is in the range of 0-255 it can be specified as

an immediate. If greater than 255 then the port number must be specified in DX. Since the PC only decodes 10 bits of the port address, values over 1023
can only be decoded by third party vendor equipment and also map to the port range 0-1023.

OouTs Transfers a byte, word or doubleword from "src" to the hardware port specified in DX. For instructions with no operands the "src" is located at DS:Sl and
Sl is incremented or decremented by the size of the operand or the size dictated by the instruction format. When the Direction Flag is set Sl is
decremented, when clear, Sl is incremented. If the port number is in the range of 0-255 it can be specified as an immediate. If greater than 255 then the
port number must be specified in DX. Since the PC only decodes 10 bits of the port address, values over 1023 can only be decoded by third party vendor
equipment and also map to the port range 0-1023.

POP Transfers word at the current stack top (SS:SP) to the destination then increments SP by two to point to the new stack top. CS is not a valid destination.

POPA/POPAD Pops the top 8 words off the stack into the 8 general purpose 16/32 bit registers. Registers are popped in the following order: (E)DI, (E)SI, (E)BP, (E)SP,
(E)DX, (E)CX and (E)AX. The (E)SP value popped from the stack is actually discarded.

POPF/POPFD Pops word/doubleword from stack into the Flags Register and then increments SP by 2 (for POPF) or 4 (for POPFD).
POPFQ POP RFLAGS Register
PREFETCHO Prefetch into all cache levels
PREFETCH1 Prefetch into all cache levels EXCEPT L1
PREFETCH2 Prefetch into all cache levels EXCEPT L1 and L2
PREFETCHNTA Prefetch into all cache levels to non-temporal cache structure
PUSH Decrements SP by the size of the operand (two or four, byte values are sign extended) and transfers one word from source to the stack top (SS:SP).

PUSHA/PUSHAD | Pushes all general purpose registers onto the stack in the following order: (E)AX, (E)CX, (E)DX, (E)BX, (E)SP, (E)BP, (E)SI, (E)DI. The value of SP is the
value before the actual push of SP.

PUSHF/PUSHFD Transfers the Flags Register onto the stack. PUSHF saves a 16 bit value while PUSHFD saves a 32 bit value.
PUSHFQ PUSH RFLAGS Register
RDMSR Load MSR specified by ECX into EDX:EAX.
RDPMC Read the PMC [Performance Monitoring Counter]; Specified in the ECX register into registers EDX:EAX
RDTSC Returns the number of processor ticks since the processor being "ONLINE" (since the last power on of system).
RDTSCP ReaD Time Stamp Counter and Processor ID
SAHF Transfers bits 0-7 of AH into the Flags Registers AF, CF, PF, SF, and ZF.
SFENCE Processor hint to make sure all store operations that took place prior to the SFENCE call are globally visible
SGDT Stores the Global Descriptor Table (GDT) Register into the specified operand.
SIDT Stores the Interrupt Descriptor Table (IDT) Register into the specified operand.
SLDT Stores the Local Descriptor Table (LDT) Register into the specified operand.
SMSW Store Machine Status Word (MSW) into "dest".
STOS Stores value in accumulator to location at ES:(E)DI (even if operand is given). (E)DI is incremented/decremented based on the size of the operand (or
instruction format) and the state of the Direction Flag.
STOSQ STOre String Quadword
STR Stores the current Task Register to the specified operand.
SWAPGS Exchange GS base with KernelGSBase MSR
WRMSR Write the value in EDX:EAX to MSR specified by ECX.

Created by Devyn Collier Johnson <DevynCJohnson@Gmail.com> (2017) More cheatsheets at DCJTech.info



x86 Assembly

XCHG

Exchanges contents of source and destination.
XLAT/XLATB

Replaces the byte in AL with byte from a user table addressed by BX. The original value of AL is the index into the translate table. The best way to
describe this is MOV AL,[BX+AL]

x87 Floating-Point Instructions
Introduced in 8087, 80287, and Pentium

Mnemonic

Description Mnemonic Description
F2XM1 2%1 FINIT Initialize floating point processor
FABS Absolute value FIST Store integer
FADD Add FISTP Store integer and pop
FADDP Add and pop FISUB Integer subtract
FBLD Load BCD FISUBR Integer subtract reversed
FBSTP Store BCD and pop FLD Floating point load
FCHS Change sign FLD1 Load 1.0 onto stack
FCLEX Clear exceptions FLDCW Load control word
FCOM Compare FLDENV Load environment state
FCOMP Compare and pop FLDENVD Load environment state, 32-bit
FCOMPP Compare and pop twice FLDENVW Load environment state, 16-bit
FCOS Cosine FLDL2E Load logz(e) onto stack
FDECSTP Decrement floating-point stack pointer FLDL2T Load log»(10) onto stack
FDISI Divide FLDLG2 Load log+o(2) onto stack
FDIV Divide FLDLN2 Load In(2) onto stack
FDIVP Divide and pop FLDPI Load 1 onto stack
FDIVR Divide reversed FLDZ Load 0.0 onto stack
FDIVRP Divide reversed and pop FMUL Multiply
FENI Enable interrupts; 8087 only, otherwise FNOP FMULP Multiply and pop
FFREE Free Register FNCLEX Clear exceptions, no wait
FIADD Integer add FNDISI Disable interrupts, no wait; 8087
only, otherwise FNOP
FICOM Integer compare FNENI Enable interrupts, no wait; 8087
only, otherwise FNOP
FICOMP Integer compare and pop FNINIT Initialize floating point processor,
no wait
FIDIV Integer divide FSIN Sine
FIDIVR Integer divide reversed FSINCOS Sine and cosine
FILD Load integer FSQRT Square root
FIMUL Integer multiply FST Floating point store
FINCSTP Increment floating point stack pointer FSTCW Store control word
FNOP No operation FSTENV Store FPU environment
FNSAVE Save FPU state, no wait, 8-bit FSTENVD Store FPU environment, 32-bit
FNSAVEW Save FPU state, no wait, 16-bit FSTENVD Store FPU environment, 32-bit
FNSTCW Store control word, no wait FSTENVW Store FPU environment, 16-bit
FNSTENV Store FPU environment, no wait FSTP Store and pop
FNSTENVW Store FPU environment, no wait, 16-bit FSTSW Store status word
FNSTSW Store status word, no wait FSUB Subtract
FPATAN Partial arctangent FSUBP Subtract and pop
FPREM Partial remainder FSUBR Reverse subtract
FPREM1 Partial remainder FSUBRP Reverse subtract and pop
FPTAN Partial tangent FTST Test for zero
FXTRACT Extract exponent and significand FUCOM Unordered compare
FYL2X y*loga(x) FUCOMP Unordered compare and pop
FYL2XP1 y*loga(x+1)

FUCOMPP | Unordered compare and pop twice

Created by Devyn Collier Johnson <DevynCJohnson@Gmail.com> (2017) More cheatsheets at DCJTech.info



x86 Assembly

Mnemonic Description Mnemonic Description
FSCALE Scale by factor of 2 FWAIT Wait while FPU is executing
FSETPM Set protected mode; 80287 only, otherwise FNOP FXAM Examine condition flags
FRNDINT Round to integer FXCH Exchange registers

FSAVE Save FPU state FRSTOR Restore saved state
FSAVED Save FPU state, 32-bit FRSTORD Restore saved state, 32-bit
FSAVEW Save FPU state, 16-bit FRSTORW Restore saved state

Variants Introduced in the Pentium-Pro
FCMOV: FCMOVB, FCMOVBE, FCMOVE, FCMOVNB, FCMOVNBE, FCMOVNE, FCMOVNU, FCMOVU
FCOMI: FCOMI, FCOMIP (Pop FP stack), FUCOMI, FUCOMIP (Pop FP stack); Compare and move results to Integer flags

MMX Instructions
Introduced in the Pentium-P5; Equivalent to AMD's 3DNow! and ARM's iwMMXt

Mnemonic Description Mnemonic Description
EMMS Empty MMX Technology State; Marks all x87 FPU PMADDWD Multiply packed word integers, add
registers for use by FPU adjacent doubleword results
MOVD Move doubleword PMULHW Multiply packed signed word integers,
store high 16 bit results
mMovQ Move quadword PMULLW Multiply packed signed word integers,
store low 16 bit results
PACKSSDW Pack doubleword to word (signed with saturation) PSLLW Shift left word, shift in zeros
PACKSSWB Pack word to byte (signed with saturation) PSLLD Shift left doubleword, shift in zeros
PACKUSWB Pack word to byte (signed with unsaturation) PSLLQ Shift left quadword, shift in zeros
PADDB Add packed byte integers PSRAD Shift right doubleword, shift in sign bits
PADDW Add packed word integers PSRAW Shift right word, shift in sign bits
PADDD Add packed doubleword integers PSRLW Shift right word, shift in zeros
PADDSB Add packed signed byte integers and saturate PSRLD Shift right doubleword, shift in zeros
PADDSW Add packed signed word integers and saturate PSRLQ Shift right quadword, shift in zeros
PADDUSB Add packed unsigned byte integers and saturate PSUBB Subtract packed byte integers
PADDUSW Add packed unsigned word integers and saturate PSUBW Subtract packed word integers
PAND Bitwise AND PSUBD Subtract packed doubleword integers
PANDN Bitwise AND NOT PSUBSB Subtract packed signed byte integers
with saturation
POR Bitwise OR PSUBSW Subtract packed signed word integers
with saturation
PXOR Bitwise XOR PSUBUSB Subtract packed unsigned byte
integers with saturation
PCMPEQB Compare packed byte integers for equality PSUBUSW Subtract packed unsigned word
integers with saturation
PCMPEQW Compare packed word integers for equality PUNPCKHBW | Unpack and interleave high-order bytes
PCMPEQD Compare packed doubleword integers for equality PUNPCKHWD Unpack and interleave high-order
words

PCMPGTB Compare packed signed byte integers for greater than PUNPCKHDQ Unpack and interleave high-order
doublewords

PCMPGTW Compare packed signed word integers for greater than PUNPCKLBW | Unpack and interleave low-order bytes

PCMPGTD Compare packed signed doubleword integers for greater | PUNPCKLDQ | Unpack and interleave low-order words
than

PUNPCKLWD Unpack and interleave low-order
doublewords

SSE Instructions

Introduced in the Pentium-IIl
* SSE Floating-Point Instructions: ADDPS, ADDSS, CMPPS, CMPSS, COMISS, CVTPI2PS, CVTPS2PI, CVTSI2SS, CVTSS2SI, CVTTPS2PI,
CVTTSS2SI, DIVPS, DIVSS, LDMXCSR, MAXPS, MAXSS, MINPS, MINSS, MOVAPS, MOVHLPS, MOVHPS, MOVLHPS, MOVLPS, MOVMSKPS,
MOVNTPS, MOVSS, MOVUPS, MULPS, MULSS, RCPPS, RCPSS, RSQRTPS, RSQRTSS, SHUFPS, SQRTPS, SQRTSS, STMXCSR, SUBPS,
SUBSS, UCOMISS, UNPCKHPS, UNPCKLPS
* SSE Integer Instructions: ANDNPS, ANDPS, ORPS, PAVGB, PAVGW, PEXTRW, PINSRW, PMAXSW, PMAXUB, PMINSW, PMINUB,
PMOVMSKB, PMULHUW, PSADBW, PSHUFW, XORPS

Created by Devyn Collier Johnson <DevynCJohnson@Gmail.com> (2017) More cheatsheets at DCJTech.info



x86 Assembly

SSE2 (Willamette) Instructions
Introduced in the Pentium-4
* SSE2 Floating-Point Instructions: ADDPD, ADDSD, ANDNPD, ANDPD, CMPPD, CMPSD*, COMISD, CVTDQ2PD, CVTDQ2PS, CVTPD2DQ,
CVTPD2PI, CVTPD2PS, CVTPI2PD, CVTPS2DQ, CVTPS2PD, CVTSD2SI, CVTSD2SS, CVTSI2SD, CVTSS2SD, CVTTPD2DQ, CVTTPD2PI,
CVTTPS2DQ, CVTTSD2SI, DIVPD, DIVSD, MAXPD, MAXSD, MINPD, MINSD, MOVAPD, MOVHPD, MOVLPD, MOVMSKPD, MOVSD*, MOVUPD,
MULPD, MULSD, ORPD, SHUFPD, SQRTPD, SQRTSD, SUBPD, SUBSD, UCOMISD, UNPCKHPD, UNPCKLPD, XORPD

SSE3 (Prescott) Instructions

Introduced in the Pentium-4 (Prescott revision)
* SSE3 Floating-Point Instructions: ADDSUBPD, ADDSUBPS, HADDPD, HADDPS, HSUBPD, HSUBPS, MOVDDUP, MOVSHDUP, MOVSLDUP
« SSE3 Integer Instructions: LDDQU
« SSE3 Float-2-Int Conversions: FISTTP; x87 to integer truncation conversion regardless of status word
« SSE3 (Intel Specific): MONITOR, MWAIT; (Optimize multi-threaded applications, giving Hyper-Threading better performance)

SSSE3 (Merom) Instructions

Introduced in Woodcrest and Bobcat

Mnemonic Description

PSIGNB, PSIGNW, PSIGND | Packed Sign; Negate the elements of a register of bytes, words or dwords if the sign of the corresponding elements of
another register is negative.

PABSB, PABSW, PABSD Packed Absolute Value; Fill the elements of a register of bytes, words or dwords with the absolute values of the
elements of another register

PALIGNR Packed Align Right; Take two registers, concatenate their values, and pull out a register-length section from an offset
given by an immediate value encoded in the instruction.
PSHUFB Packed Shuffle Bytes
PMULHRSW Packed Multiply High with Round and Scale; Treat the sixteen-bit words in registers A and B as signed 15-bit fixed-

point numbers between -1 and 1 (e.g. 0x4000 is treated as 0.5 and 0xa000 as —0.75), and multiply them together with
correct rounding.

PMADDUBSW Multiply and Add Packed Signed and Unsigned Bytes
PHSUBW, PHSUBD Packed Horizontal Subtract (Words or Doublewords); Takes registers A =[a0 a1 a2 ...]and B = [b0 b1 b2 ...] and
outputs [a0-a1 a2-a3 ... b0-b1 b2-b3 ...]
PHSUBSW Packed Horizontal Subtract and Saturate Words
PHADDW, PHADDD Packed Horizontal Add (Words or Doublewords); Takes registers A =[a0 a1 a2 ...] and B = [b0 b1 b2 ...] and outputs
[a0+a1 a2+a3 ... b0+b1 b2+b3 ...]
PHADDSW Packed Horizontal Add and Saturate Words

Each instruction can act on 64-bit MMX or 128-bit XMM registers
SSE4.1 (Penryn) Instructions

Introduced in the Intel Core microarchitecture, Bulldozer, AMD K10 (K8L), and VIA Nano-based processors

Mnemonic Description
MPSADBW Compute eight offset sums of absolute differences, four at a time
PHMINPOSUW Sets the bottom unsigned 16-bit word of the destination to the smallest unsigned 16-bit word in the source,
and the next-from-bottom to the index of that word in the source.
PMULDQ Packed signed multiplication on two sets of two out of four packed integers, the 1st and 3rd per packed 4,
giving two packed 64-bit results.
PMULLD Packed signed multiplication, four packed sets of 32-bit integers multiplied to give 4 packed 32-bit results.
DPPS, DPPD Dot product for AOS (Array of Structs) data. This takes an immediate operand consisting of four (or two for

DPPD) bits to select which of the entries in the input to multiply and accumulate, and another four (or two for
DPPD) to select whether to put 0 or the dot-product in the appropriate field of the output.

BLENDPS, BLENDPD, BLENDVPS, Conditional copying of elements in one location with another, based (for non-V form) on the bits in an
BLENDVPD, PBLENDVB, PBLENDW immediate operand, and (for V form) on the bits in register XMMO.
PMINSB, PMAXSB, PMINUW, Packed minimum/maximum for different integer operand types

PMAXUW, PMINUD, PMAXUD,
PMINSD, PMAXSD

ROUNDPS, ROUNDSS, ROUNDPD, Round values in a floating-point register to integers, using one of four rounding modes specified by an
ROUNDSD immediate operand
INSERTPS, PINSRB, PINSRD, The INSERTPS and PINSR instructions read 8, 16 or 32 bits from an x86 register or memory location and
PINSRQ, EXTRACTPS, PEXTRB, inserts it into a field in the destination register given by an immediate operand. EXTRACTPS and PEXTR
PEXTRD, PEXTRQ read a field from the source register and insert it into an x86 register or memory location.

Created by Devyn Collier Johnson <DevynCJohnson@Gmail.com> (2017) More cheatsheets at DCJTech.info



x86 Assembly

Mnemonic Description

PMOVSXBW, PMOVZXBW, Packed sign/zero extension to wider types
PMOVSXBD,
PMOVZXBD, PMOVSXBQ,
PMOVZXBQ,
PMOVSXWD, PMOVZXWD,
PMOVSXWQ,
PMOVZXWQ,
PMOVSXDQ,PMOVZXDQ

PTEST This is similar to the TEST instruction, in that it sets the Z flag to the result of an AND between its operands:
ZF is set, if DEST AND SRC is equal to 0. Additionally it sets the C flag if (NOT DEST) AND SRC equals
zero.

PCMPEQQ Quadword (64 bits) compare for equality
PACKUSDW Convert signed DWORDs into unsigned WORDs with saturation
MOVNTDQA Efficient read from write-combining memory area into SSE register

* SSE4.1 Floating-Point Instructions: DPPS, DPPD, BLENDPS, BLENDPD, BLENDVPS, BLENDVPD, ROUNDPS, ROUNDSS, ROUNDPD,
ROUNDSD, INSERTPS, EXTRACTPS

* SSE4.1 Integer Instructions: MPSADBW, PHMINPOSUW, PMULLD, PMULDQ, PBLENDVB, PBLENDW, PMINSB, PMAXSB, PMINUW,
PMAXUW, PMINUD, PMAXUD, PMINSD, PMAXSD, PINSRB, PINSRD/PINSRQ, PEXTRB, PEXTRW, PEXTRD, PEXTRQ, PMOVSXBW, PMOVZXBW,
PMOVSXBD, PMOVZXBD, PMOVSXBQ, PMOVZXBQ, PMOVSXWD, PMOVZXWD, PMOVSXWQ, PMOVZXWQ, PMOVSXDQ, PMOVZXDQ, PTEST,

PCMPEQQ, PACKUSDW, MOVNTDQA
SSEA4.2 Instructions

Introduced in the Nehalem-based Core i7 and Bulldozer
Mnemonic Description

CRC32 Accumulate CRC32C value using the polynomial 0x11EDC6F41 (or, without the high order bit, 0OxX1TEDC6F41)

PCMPESTRI Packed Compare Explicit Length Strings, Return Index
PCMPESTRM Packed Compare Explicit Length Strings, Return Mask
PCMPISTRI Packed Compare Implicit Length Strings, Return Index
PCMPISTRM Packed Compare Implicit Length Strings, Return Mask
PCMPGTQ Compare Packed Signed 64-bit data For Greater Than

SSE4a Instructions
Introduced in AMD's Barcelona microarchitecture

Mnemonic Description
EXTRQ Extracts a particular set of bits from a register and moves them to the register’s least significant position
INSERTQ Inserts field from a source register to a destination register

MOVNTSD Write the least significant 32 bits of a register to memory using the non-temporal hint. For example, a loop that performs scalar single-precision
floating point math on a large array can use the SSE registers and MOVNTSS to store results to memory.

MOVNTSS Write the lower 64 bits of a register to memory using the non-temporal hint. This instruction can be used for similar purposes as the MOVNTSS
instruction, but typically for double-precision floating point data.

Advanced Bit Manipulation (ABM) Instructions

Introduced in AMD's Barcelona microarchitecture
Mnemonic Description

LZCNT Leading zero count; Introduced in Haswell

POPCNT | Population count (count number of bits set to 1); Introduced in Nehalem

Bit Manipulation Instruction Set 1 (BMI1) Instructions
Introduced in Haswell, Jaguar, and Piledriver

Mnemonic Description
ANDN Logical and not; (~x & y)
BEXTR Bit field extract (with register); ((src >> start) & ((1 << len)-1))

BLSI Extract lowest set isolated bit; (x & -x)
BLSMSK Get mask up to lowest set bit; (x * (x - 1))
BLSR Reset lowest set bit; (x & (x - 1))
TZCNT Count the number of trailing zero bits

Created by Devyn Collier Johnson <DevynCJohnson@Gmail.com> (2017) More cheatsheets at DCJTech.info



x86 Assembly

Bit Manipulation Instruction Set 2 (BMI2) Instructions

Introduced in Haswell and Excavator

Mnemonic Description
BZHI Zero high bits starting with specified bit position
MULX Unsigned multiply without affecting flags, and arbitrary destination registers
PDEP Parallel bits deposit
PEXT Parallel bits extract
RORX Rotate right logical without affecting flags
SARX Shift arithmetic right without affecting flags
SHRX Shift logical right without affecting flags
SHLX Shift logical left without affecting flags

Trailing Bit Manipulation (TBM) Instructions

Mnemonic Description

BEXTR Bit field extract (with immediate); ((src >> start) & ((1 << len)-1))

BLCFILL Fill from lowest clear bit; (x & (x + 1))
BLCI Isolate lowest clear bit; (x | ~(x + 1))
BLCIC Isolate lowest clear bit and complement; (~x & (x + 1))
BLCMASK Mask from lowest clear bit; (x * (x + 1))
BLCS Set lowest clear bit; (x | (x + 1))
BLSFILL Fill from lowest set bit; (x | (x - 1))
BLSIC Isolate lowest set bit and complement; (~x | (x - 1))
T1MSKC Inverse mask from trailing ones; (~x | (x + 1))
TZMSK Mask from trailing zeros; (~x & (x - 1))

Multi-Precision Add-Carry Instruction Extensions (ADX)

Introduced in Broadwell
Mnemonic Description
ADCX Adds two unsigned integers plus carry, reading the carry from

the carry flag and if necessary setting it there. Does not affect
other flags than the carry.

ADOX Adds two unsigned integers plus carry, reading the carry from
the overflow flag and if necessary setting it there. Does not
affect other flags than the overflow.

Carry-less Multiplication (CLMUL) Instructions

Introduced in Westmere and Bulldozer

Mnemonic (Intel Syntax) Description
PCLMULQDQ xmmreg,xmmrm,imm Perform a carry-less multiplication of two 64-bit polynomials over the finite field GF(2)
PCLMULLQLQDQ xmmreg,xmmrm Multiply the low halves of the two registers
PCLMULHQLQDQ xmmreg,xmmrm Multiply the high half of the destination register by the low half of the source register
PCLMULLQHQDQ xmmreg,xmmrm Multiply the low half of the destination register by the high half of the source register
PCLMULHQHQDQ xmmreg,xmmrm Multiply the high halves of the two registers

Mnemonic
VFMADDPD

NOTE: Finite field (GF(2**k)) multiplication can be implemented more efficiently

FMA/FMA3 Instructions

Introduced in Piledriver, Haswell, and Broadwell
Description

Fused Multiply-Add of Packed Double-Precision Floating-Point Values; VFMADDPD xmm0, xmm1, xmm2, xmm3

VFMADDPS
VFMADDSD
VFMADDSS

Fused Multiply-Add of Packed Single-Precision Floating-Point Values
Fused Multiply-Add of Scalar Double-Precision Floating-Point Values
Fused Multiply-Add of Scalar Single-Precision Floating-Point Values

Created by Devyn Collier Johnson <DevynCJohnson@Gmail.com> (2017) More cheatsheets at DCJTech.info



Mnemonic
VFMADDSUBPD

x86 Assembly

Description
Fused Multiply-Alternating Add/Subtract of Packed Double-Precision Floating-Point Values

VFMADDSUBPS
VFMSUBADDPD
VFMSUBADDPS

Fused Multiply-Alternating Add/Subtract of Packed Single-Precision Floating-Point Values
Fused Multiply-Alternating Subtract/Add of Packed Double-Precision Floating-Point Values
Fused Multiply-Alternating Subtract/Add of Packed Single-Precision Floating-Point Values

VFMSUBPD
VFMSUBPS
VFMSUBSD

Fused Multiply-Subtract of Packed Double-Precision Floating-Point Values
Fused Multiply-Subtract of Packed Single-Precision Floating-Point Values

Fused Multiply-Subtract of Scalar Double-Precision Floating-Point Values

VFMSUBSS
VFNMADDPD
VFNMADDPS

Fused Multiply-Subtract of Scalar Single-Precision Floating-Point Values
Fused Negative Multiply-Add of Packed Double-Precision Floating-Point Values
Fused Negative Multiply-Add of Packed Single-Precision Floating-Point Values

VFNMADDSD
VFNMADDSS
VFNMSUBPD

Fused Negative Multiply-Add of Scalar Double-Precision Floating-Point Values
Fused Negative Multiply-Add of Scalar Single-Precision Floating-Point Values

Fused Negative Multiply-Subtract of Packed Double-Precision Floating-Point Values

VFNMSUBPS
VFNMSUBSD
VFNMSUBSS

Fused Negative Multiply-Subtract of Packed Single-Precision Floating-Point Values
Fused Negative Multiply-Subtract of Scalar Double-Precision Floating-Point Values

Fused Negative Multiply-Subtract of Scalar Single-Precision Floating-Point Values

NOTE: VFMADDPDx uses XMM; VFMADDPDy uses YMM

FMAA4 Instructions

Introduced in Bulldozer
Mnemonic Operands

VFMADDPDx xmm, xmm, xmm/m128, xmm/m128
VFMADDPDy ymm, ymm, ymm/m256, ymm/m256
VFMADDPSx xmm, xmm, xmm/m128, xmm/m128
VFMADDPSy ymm, ymm, ymm/m256, ymm/m256
VFMADDSD  xmm, xmm, xmm/m64, xmm/m64
VFMADDSS xmm, xmm, xmm/m32, xmm/m32

NOTE: FMA4 uses four operands while FMA3 uses three operands

AVX Instructions
Introduced in Sandy Bridge and Bulldozer

Mnemonic

Description

VBROADCASTSS, VBROADCASTSD, VBROADCASTF128

VINSERTF128

VEXTRACTF128

VMASKMOVPS, VMASKMOVPD

Copy a 32, 64, or 128 bit memory operand to all elements
of a XMM or YMM vector register

Replaces either the lower half or the upper half of a 256-bit
YMM register with the value of a 128-bit source operand.
The other half of the destination is unchanged.

Extracts either the lower half or the upper half of a 256-bit
YMM register and copies the value to a 128-bit destination
operand

Conditionally reads any number of elements from a SIMD
vector memory operand into a destination register, leaving
the remaining vector elements unread and setting the
corresponding elements in the destination register to zero

VPERMILPS, VPERMILPD

VPERM2F128

VZEROALL

VZEROUPPER

Permute In-Lane. Shuffle the 32-bit or 64-bit vector
elements of one input operand.

Shuffle the four 128-bit vector elements of two 256-bit
source operands into a 256-bit destination operand, with an
immediate constant as selector

Set all YMM registers to zero and tag them as unused;
Used when switching between 128-bit and 256-bit

Set the upper half of all YMM registers to zero; Used when
switching between 128-bit and 256-bit

Created by Devyn Collier Johnson <DevynCJohnson@Gmail.com> (2017) More cheatsheets at DCJTech.info



x86 Assembly

AVX2 Instructions
Introduced in Haswell and Carrizo

Mnemonic Description

VBROADCASTSS, VBROADCASTSD Copy a 32-bit or 64-bit register operand to all elements of a XMM

or YMM vector register. These are register versions of the same
instructions in AVX1. There is no 128-bit version however, but the
same effect can be simply achieved using VINSERTF128.

VPBROADCASTB, VPBROADCASTW, VPBROADCASTD, VPBROADCASTQ Copy an 8, 16, 32 or 64-bit integer register or memory operand to
all elements of a XMM or YMM vector register
VBROADCASTI128

VINSERTI128

Copy a 128-bit memory operand to all elements of a YMM register

Replaces either the lower half or the upper half of a 256-bit YMM
register with the value of a 128-bit source operand. The other half
of the destination is unchanged

VEXTRACTI128 Extracts either the lower half or the upper half of a 256-bit YMM

register and copies the value to a 128-bit destination operand

VGATHERDPD, VGATHERQPD, VGATHERDPS, VGATHERQPS Gathers single or double precision floating point values using

either 32 or 64-bit indices and scale

VPGATHERDD, VPGATHERDQ, VPGATHERQD, VPGATHERQQ Gathers 32 or 64-bit integer values using either 32 or

64-bit indices and scale

VPMASKMOVD, VPMASKMOVQ Conditionally reads any number of elements from a SIMD vector

memory operand into a destination register, leaving the remaining
vector elements unread and setting the corresponding elements
in the destination register to zero

VPERMPS, VPERMD Shuffle the eight 32-bit vector elements of one 256-bit source

operand into a 256-bit destination operand, with a register or
memory operand as selector

VPERMPD, VPERMQ Shuffle the four 64-bit vector elements of one 256-bit source

operand into a 256-bit destination operand, with a register or
memory operand as selector

VPERM2I128 Shuffle the four 128-bit vector elements of two 256-bit source
operands into a 256-bit destination operand, with an immediate
constant as selector
VPBLENDD

Doubleword immediate version of the PBLEND instructions from
SSE4

VPSLLVD, VPSLLVQ Shift left logical. Allows variable shifts where each element is

shifted according to the packed input.

VPSRLVD, VPSRLVQ Shift right logical. Allows variable shifts where each element is

shifted according to the packed input.

VPSRAVD Shift right arithmetically. Allows variable shifts where each
element is shifted according to the packed input.
AES Instructions SHA Instructions
Introduced in Westmere and Bulldozer Introduced in Intel's Goldmont microarchitecture
Mnemonic Description Mnemonic  Description
AESENC Perform one round of an AES encryption flow SHA1RNDS4 SHA-1
AESENCLAST Perform the last round of an AES encryption flow SHATNEXTE SHA-1
AESDEC Perform one round of an AES decryption flow SHATMSG1 SHA-1
AESDECLAST Perform the last round of an AES decryption flow SHA1TMSG2 SHA-1
AESKEYGENASSIST Assist in AES round key generation SHA256RNDS2 SHA-256
AESIMC Assist in AES Inverse Mix Columns SHA256MSG1 SHA-256
PCLMULQDQ Carryless multiply SHA256MSG2 SHA-256

XOP Instructions
Introduced in Bulldozer

Mnemonic Description Mnemonic Description
Integer Vector Multiply-Accumulate Vector Conditional Move
VPMACSWW, VPMACSSWW | Multiply Accumulate (with Saturation) Word VPCMOV Vector Conditional Move
to Word

VPMACSWD, VPMACSSWD Multiply Accumulate (with Saturation) Low
Word to Dword

VPMACSDD, VPMACSSDD Multiply Accumulate (with Saturation) VPROTB
Dword to Dword

Integer Vector Shift and Rotate

Packed Rotate Bytes

Created by Devyn Collier Johnson <DevynCJohnson@Gmail.com> (2017) More cheatsheets at DCJTech.info



x86 Assembly

Mnemonic Description Mnemonic Description
VPMACSDQL, VPMACSSDQL = Multiply Accumulate (with Saturation) Low VPROTW Packed Rotate Words
Dword to Qword
VPMACSDQH, VPMACSSDQH = Multiply Accumulate (with Saturation) High VPROTD Packed Rotate Doublewords
Dword to Qword
VPMADCSWD, VPMADCSSWD | Multiply Add Accumulate (with Saturation) VPROTQ Packed Rotate Quadwords
Word to Dword
Integer Vector Horizontal Addition VPSHAB Packed Shift Arithmetic Bytes
VPHADDBW, VPHADDUBW Horizontal add two bytes to word VPSHAW Packed Shift Arithmetic Words
VPHADDBD, VPHADDUBD Horizontal add four bytes to dword VPSHAD Packed Shift Arithmetic
Doublewords
VPHADDBQ, VPHADDUBQ Horizontal add eight bytes to quadword VPSHAQ Packed Shift Arithmetic
Quadwords
VPHADDWD, VPHADDUWD Horizontal add two signed/unsigned words VPSHLB Packed Shift Logical Bytes
to dword
VPHADDWQ, VPHADDUWQ Horizontal add four words to quadword VPSHLW Packed Shift Logical Words
VPHADDDQ, VPHADDUDQ Horizontal add two dwords to quadword VPSHLD Packed Shift Logical
Doublewords
VPHSUBBW Horizontal subtract two signed bytes to VPSHLQ Packed Shift Logical
word Quadwords
VPHSUBWD Horizontal subtract two signed words to Vector Permute
dword
VPHSUBDQ Horizontal subtract two signed dwords to VPPERM Packed Permute Byte

Integer Vector Compare

qword

VPPERMIL2PD Permute Two-Source Double-

Precision Floating-Point

VPCOMB Compare Vector Signed Bytes VPPERMIL2PS Permute Two-Source Single-
Precision Floating-Point
VPCOMW Compare Vector Signed Words Floating-point Fraction Extraction
VPCOMD Compare Vector Signed Doublewords VFRCZPD Extract Fraction Packed
Double-Precision Floating-Point
VPCOMQ Compare Vector Signed Quadwords VFRCZPS Extract Fraction Packed Single-
Precision Floating-Point
VPCOMUB Compare Vector Unsigned Bytes VFRCZSD Extract Fraction Scalar Double-
Precision Float
VPCOMUW Compare Vector Unsigned Words VFRCZSS Extract Fraction Scalar Float
VPCOMUD Compare Vector Unsigned Doublewords
VPCOMUQ Compare Vector Unsigned Quadwords

XOP Comparison Immediates

Introduced in Bulldozer

Miscellaneous Instructions

Intel VT-x: VMPTRLD, VMPTRST, VMCLEAR, VMREAD, VMWRITE,

RDSEED (Introduced in Broadwell and Zen)
UMOV (80386/80486 ICE processors only)
LOADALL, LOADALLD, UD1, SALC
SYSCALL (AMD K®6; equivalent to SYSENTER)
SYSRET (AMD KB6; equivalent to SYSEXIT)
FFREEP performs FFREE ST(i) and pop stack
TSX: XACQUIRE, XRELEASE, XBEGIN, XEND, XABORT, XTEST

Immediate Description
VMCALL, VMLAUNCH, VMRESUME, VMXOFF, VMXON
000 Less Than RDRAND (lvy Bridge)
001 Less Than or Equal
010 Greater Than
011 Greater Than or Equal
100 Equal
101 Not Equal
110 False
111 True
Intel MPX (Memory Protection Extensions)
Introduced in Skylake

BNDMK Create bounds BNDCFGU User space configuration register

BNDCU | Check upper bound | BNDCFGS  Kernel space configuration register

BNDLDX Bounds load BNDSTATUS Status register

BNDSTX Bounds store

Created by Devyn Collier Johnson <DevynCJohnson@Gmail.com> (2017) More cheatsheets at DCJTech.info



x86 Assembly
F16C/CVT16 Instructions

Introduced in Bulldozer
Mnemonic (Intel Syntax) Description

VCVTPH2PS xmmreg,xmmrm64 Convert four half-precision floating point values in memory or the bottom half of an XMM register to four

single-precision floating-point values in an XMM register

VCVTPH2PS ymmreg,xmmrm128 Convert eight half-precision floating point values in memory or an XMM register (the bottom half of a

YMM register) to eight single-precision floating-point values in a YMM register

VCVTPS2PH xmmrm64,xmmreg,imm38 Convert four single-precision floating point values in an XMM register to half-precision floating-point
values in memory or the bottom half an XMM register; imm8 selects the rounding mode

VCVTPS2PH xmmrm128,ymmreg,imm8 Convert eight single-precision floating point values in a YMM register to half-precision floating-point

values in memory or an XMM register; imm8 selects the rounding mode

NOTE: Support for these instructions is indicated by bit 29 of ECX after using CPUI with EAX=1

Interrupts

Standard ISA IRQs Hardware Exceptions

0 - Programmable Interrupt Timer Interrupt 0x00 - Division by zero

1 - Keyboard Interrupt 0x01 - Debugger

2 - Cascade (used internally by the two PICs; never raised) 0x02 - Non-Maskable interrupt (NMI)
3 - COM2 (if enabled) 0x03 - Breakpoint

4 - COM1 (if enabled) 0x04 - Overflow

5 - LPT2 (if enabled) 0x05 - Bounds

6 - Floppy Disk 0x06 - Invalid Opcode

7 - LPT1 / Unreliable "spurious" interrupt (usually) 0x07 - Coprocessor not available

8 - CMOS real-time clock (if enabled) 0x08 - Double fault

9 - Free for peripherals / legacy SCSI/ NIC
10 - Free for peripherals / SCSI / NIC

11 - Free for peripherals / SCSI / NIC

12 - PS2 Mouse

13 - FPU / Coprocessor / Inter-processor
14 - Primary ATA Hard Disk

15 - Secondary ATA Hard Disk

0x0a - Invalid Task State Segment
0x0b - Segment not present

0x0c - Stack Fault

0x0d - General protection fault
0x0e - Page Fault

0x0f - Reserved

0x10 - Math Fault

0x11 - Alignment Check

0x12 - Machine Check

Default PC Interrupt Vectors
* 0-31 - Protected Mode Exceptions (Reserved by Intel)
+ 8-15 - Default mapping of IRQO-IRQ7 by the BIOS at bootstrap

+  0x70-0x78 - Default mapping of IRQ8-IRQ15 by the BIOS at bootstrap 0x14 - Virtualization Exception

0x15-0x1f - reserved

Created by Devyn Collier Johnson <DevynCJohnson@Gmail.com> (2017) More cheatsheets at DCJTech.info

0x09 - Coprocessor Segment Overrun (386 or earlier only)

0x13 - SIMD Floating-Point Exception (extended math fault)



