
 [image: slide]

 SuperTux Scripting Reference

 INTRODUCTION

 Since May 2005, SuperTux sports a Squirrel scripting interface useful for level designers who want to add some interactive pep to their levels. This document poses as a reference article for those who want to explore the various objects of the SuperTux scripting model.

 What is Squirrel?

 One of your first questions might be, "What does a rodent have to do with a penguin?" Squirrel is a language with a syntax not much unlike other C-like languages (C, C++, Java, ...). In the current implementation, it is integrated as elements in the SuperTux level and worldmap files. The Console is a full-fledged Squirrel interpreter as well.

 Squirrel, S-expr and SuperTux

 I have no clue if the developers simply chose Squirrel just because the name so nicely integrates into the series of words "SuperTux" and "S-expr". Currently, the Squirrel code is integrated in string arguments of Scheme elements in SuperTux level files. (Whew.) This is an example code block inside a level:

 (supertux-level

 (version 2)

 (name (_ "Go Blind"))

 (author "Team")

 (sector (name "main")

 (music "Annoying_penguin_gawking_sounds.ogg")

 ;; tilemaps, objects, whatever. (optional)

 ;...

 (init-script "Effect.fade_out(2.5);")

 ;; more tilemaps, objects, and whatever. (optional)

 ;...

)

)

 When this level loads, the screen fades out completely during two and a half seconds right after the level is loaded. (Mind you, this would be a frustrating experience for the player if you add a horde of badguys near the spawn point...)

 Object Reference

 If you are interested in an object and what cans of worms you can open with it, this section is for you.

 "(NYI)" after the function name symbolises functions that haven't been implemented yet. Calling them will result in a line being printed to standard output informing anybody who reads it that the script is using a function that actually doesn't exist.

 Classes

 Globals- This section contains all globally defined constants and functions

 Player- An object that is controlled by a (human) player

 DisplayEffect- An object that does graphical effects on the whole screen

 Camera- Control over the camera (what the player sees)

 ScriptingPath- Control over object paths

 Level- Control over the status the game keeps about the current level.

 LevelTime- Scripting interface to level time object

 ScriptedObject- Object in a level than can be manipulated from scripts

 ScriptedSound- Control over the audio system

 Text- Display text in the top-center of the screen

 FloatingImage- Display an image floating in front of anything on-screen

 Platform- Scripting interface to Platform object

 Tilemap- Scripting interface to Tilemap object

 Wind- Scripting interface to Wind object

 Candle- Scripting interface to Candle object

 Thunderstorm- Scripting interface to Thunderstorm object

 AmbientSound- Scripting interface to AmbientSound object

 Will-O-Wisp- Scripting interface to Will-o-wisp object

 Sector- Scripting interface to the Sector itself.

 GLOBALS

 This module contains global constants and methods.

 Methods

 display(*** object) - Displays the string value of object in the Console. Object can be of any data type.

 print_stacktrace() - Displays contents of the current stack.

 load_worldmap(string filename) - Loads and runs the worldmap specified in filename. (The path is relative to the data root.)

 load_level(string filename) - Loads and runs the level specified in filename. (The path is relative to the data root.)

 get_current_thread() - Returns the currently running thread.

 display_text_file(string filename) - Displays the SuperTux text file named filename. (The path is relative to the data root, e.g. "/home/joe/src/supertux-trunk/data") See also: SuperTux file format reference, SuperTux texts

 wait(float time) - Pauses execution of the Squirrel code for time seconds.

 wait_for_screenswitch() - Pauses execution of the Squirrel code until a new screen is displayed (e.g. menu → worldmap or worldmap → level).

 exit_screen() - Exits the current screen, returning to the previous one or, if the active screen is the last one, exiting SuperTux.

 fadeout_screen(float seconds) - Does a fadeout for the specified number of seconds before next screenchange.

 shrink_screen(float dest_x, float dest_y, float seconds) - Does a shrinking fade towards the destposition for the specified number of seconds before next screenchange.

 translate(string text) - Returns: translated string. Translates text into the user's locale. Note: This construct is unfortunately not yet recognized by XGetText, so translation files have to be written manually.

 import(string filename) - Imports and runs the Squirrel script filename. (The path is relative to the data root.)

 save_state() - Dumps the current state into the user's save game file.

 update_worldmap() - Update worldmap from worldmap state (state.world variable)

 play_music(string musicfile) - Changes music to musicfile

 play_sound(string soundfile) - Plays a soundfile

 debug_collrects(bool enable) - Enables or disables drawing of collision rectangles.

 debug_show_fps(bool enable) - Enables or disables drawing of the FPS. (Also affects config file)

 debug_draw_solids_only(bool enable) - When enabled, only draws solid tilemaps. (No background/foreground tiles)

 set_game_speed(float speed) - Set speed to run the game at. (Doesn't affect menus/gui)

 grease() - Speeds Tux's horizontal velocity by a factor of 3.

 ghost() - Makes Tux a ghost, letting him float around and through objects.

 invincible() - Make Tux invincible for 10000 units of game time.

 mortal() - Recall Tux's invincibility or ghost status. (Even when not given with above 2 commands)

 restart() - Reinitialize and respawn Tux at the beginning of the current level.

 whereami() - Print out Tux's coordinates to the console.

 gotoend() - Moves Tux horizontally 2 screens away from the end.

 camera() - Display the current camera's coordinates. (top-left corner)

 quit() - Exits the game. (Not recommended for use in levels!)

 int rand() - Returns a random evenly-distributed integer between 0 and 2147483647, inclusive.

 Constants

 ANCHOR_TOP - represents the top center anchor point of a rectangle

 ANCHOR_BOTTOM - represents the bottom center anchor point of a rectangle

 ANCHOR_LEFT - represents the left anchor point of a rectangle

 ANCHOR_RIGHT - represents the right anchor point of a rectangle

 ANCHOR_MIDDLE - represents the middle anchor point of a rectangle

 ANCHOR_TOP_LEFT - represents the top left anchor point of a rectangle

 ANCHOR_TOP_RIGHT - represents the top right anchor point of a rectangle

 ANCHOR_BOTTOM_LEFT - represents the bottom left anchor point of a rectangle

 ANCHOR_BOTTOM_RIGHT - represents the bottom right anchor point of a rectangle

 PLAYER

 This module contains methods controlling the player. (No, SuperTux doesn't use mind control. Player refers to the type of the player object.)

 Instances

 Due to SuperTux's single-player nature, there is only one instance of the Player object. You can access it via Tux from a script and sector.Tux from the console.

 Methods

 add_bonus(string bonusname) - Gives Tux the specified bonus. Replace bonusname with either of "grow", "fireflower" or "iceflower".

 add_coins(int number) - Gives Tux number coins.

 Tip: Tux has to pay 25 coins to be revived at the last firefly he visited. If he doesn't have enough coins, the player has to play the whole level again.

 make_invincible() - Makes the player invincible for either a predefined amount of time.

 See also: TUX_INVINCIBLE_TIME in src/object/player.hpp for the amount of seconds that the player becomes invincible.

 deactivate() - Stops the player and blocks the movement controls.

 Tip: Don't call this in front of a horde of badguys. Carried items like trampolines won't be dropped.

 activate() - Reactivates the player's movement controls.

 walk(float speed) - Make Tux walk

 set_visible(bool visible) - Shows or hides Tux according to the value of visible. Note: Tux doesn't interact with objects or badguys while invisible.

 get_visible() - Returns: bool; is Tux visible?

 kill(bool completely) - Hurts a player, if completely=true then the player will be killed even if he had grow or fireflower bonus.

 set_ghost_mode(bool enable) - Switches ghost mode on/off.

 Lets Tux float around and through solid objects.

 get_ghost_mode() - Returns whether ghost mode is currently enabled

 do_cheer() - Makes Tux cheer, if possible.

 do_duck() - Makes Tux duck, if possible.

 do_standup() - Makes Tux stand up, if possible.

 do_backflip() - Makes Tux backflip, if possible.

 do_jump() - Makes Tux jump, if possible.

 trigger_sequence(string sequence_name) - Orders the current GameSession to start a sequence. One of "stoptux", "endsequence", or "fireworks".

 use_scripting_controller(bool use_or_release) - Uses a scriptable controller for all user input (or restores controls)

 do_scripting_controller(string control, bool pressed) - Instructs the scriptable controller to press or release a button. control can be "left", "right", "up", "down", "jump", "action", "pause-menu", "menu-select", "console", "peek-left", or "peek-right".

 Constants

 None

 DISPLAY EFFECT

 DisplayEffect is an interface for toying with the display.

 Instances

 SuperTux creates an instance named Effect when starting the scripting engine. Its usage is preferred – creating another instance might have unexpected side effects and is strongly discouraged. (Use sector.Effect in the console.)

 Methods

 fade_out(float fadetime) - Gradually fades out the screen to black for the next fadetime seconds.

 fade_in(float fadetime) - Gradually fades in the screen from black for the next fadetime seconds.

 set_black(bool black) - Blackens or un-blackens the screen (depending on the value of black).

 is_black() - Returns: bool; has the screen been blackened by set_black?

 Note: Calling fade_in or fade_out resets the return value to false.

 sixteen_to_nine(float fadetime) - Sets the display ratio to 16:9, effectively adding black bars at the top and bottom of the screen. Should be used before cutscenes. Gradually fades to this state for the next fadetime seconds.

 four_to_three(float fadetime) - Sets the display ratio to 4:3, removing the black bars added by sixteen_to_nine(). Should be used after cutscenes. Gradually fades to this state for the next fadetime seconds.

 Constants

 None

 CAMERA

 Camera is an interface to manipulate the camera.

 Instances

 An instance named Camera (sector.Camera in the console) is available. (Note: doesn't having a class and an eponymous instance create a potential for conflicts? We should probably rename the instance or the class.)

 The mode of the camera is either normal (the camera is following the player) or autoscroll. In the latter mode the camera is forced along a specified path. The left and right borders of the screen are solid. If the player fails to hold up with the moving camera, Tux is pushed forward according to the camera movement, possibly squishing him when he is between the border of the screen and other solid objects.

 Example

 (camera

 (mode "autoscroll")

 (path

 (node

 (x 0)

 (y 0)

 (time 250)

)

 (node

 (x 19072)

 (y 0)

)

)

)

 Methods

 shake(float time, float x, float y) - Shakes camera in the vector specified by x and y.

 set_pos(float x, float y) - Moves the camera to the specified position. Warning: This function has not yet been implemented.

 set_mode(string modestring) - This function sets the camera mode. Valid values for modestring are "normal" and "manual".

 scroll_to(float x, float y, float time) - Scrolls the camera to (x, y) within time seconds.

 Constants

 None

 ScriptingPath

 A Path is a series of points that can be followed by some objects. This way controlled movement can be implemented, like opening doors, moving platforms, traps, etc.

 Synopsis

 (path

 (mode "circular")

 (node

 (x 800)

 (y 96)

 (time 0.3)

)

 (node

 (x 832)

 (y 96)

 (time 1.0)

)

)

 Syntax

 A path consists of a mode setting and one or more nodes.

 Mode

 The mode specifies the behavior at the end of the path when automatic movement is activated, i.e. the object is going to all nodes in order one by one (rather than being told to go to a specific node and stay there). It takes one string argument with the following possible values:

 	circular

 After reaching the last node go directly back to the first node, forming a circle.

 	pingpong

 After reaching the last node go back the path, visiting all nodes in reverse order. This is especially useful for moving platforms that go back and forth a specific path.

 	oneshot

 When reaching the last node, stay there.

 (FIXME: I have no idea if this is correct)

 Example:

 (mode "circular")

 Nodes

 Nodes are points in the level along which the associated object moves. They have the following attributes:

 	x

 x-coordinate of the point in pixels.

 	y

 y-coordinate of the point in pixels.

 	time (optional)

 Time it takes to move to the next point in seconds. Defaults to one second.

 Example:

 (node

 (x 42)

 (y 23)

 (time 1.337)

)

 Scripting

 Objects a path is associated with usually provide the following methods:

 	goto_node(int node_no)

 	advance until at given node, then stop. Nodes are numbered from 0 to n−1.

 	start_moving()

 	start advancing automatically

 	stop_moving()

 	stop advancing automatically

 LEVEL

 The Level class provides basic controlling functions for the current level.

 Instances

 An instance named Level is available from scripts and the console. (Note: class and eponymous instance might create potential conflicts – the name of one might be changed eventually)

 Methods

 finish(bool win) - Ends the current level. If you set win to true, the level is marked as completed if launched from a worldmap.

 Tip: Very useful if you have created a frustrating level and want to, at some point, save the player from agony.

 spawn(string sectorname, string spawnpointname) - Respawns Tux in the sector sectorname at the spawnpointname spawnpoint.

 Exceptions: If sectorname or spawnpointname are empty or the specified sector does not exist, the function will bail out first chance it gets. If the specified spawnpoint doesn't exist, Tux will be spawned at the spawnpoint named main. If this spawnpoint doesn't exist either, Tux will simply end up at the origin (top-left 0, 0).

 flip_vertically() - Flips the level vertically (i.e. top is now bottom and vice versa). Call again to revert the effect.

 Tip: Make sure the player can land on something after the level is flipped!

 toggle_pause() - Toggle pause

 edit(bool editing) - Change to/from edit mode

 Constants

 None

 Example

 Teleportation

 The following code teleports the player to spawnpoint "main" in "underground".

 (scripttrigger

 (script "Level.spawn(\"underground\", \"main\");]]")

 (button #f)

 ...

)

 LEVEL TIME

 A LevelTime object that is given a name can be controlled by scripts.

 Instances

 A LevelTime object is instantiated by a definition in the level file. It can be accessed by scripts using its name and from the console as sector.name.

 Example

 Example of a definition:

 (leveltime

 (name "TIME")

 (time 300)

)

 The above time will be exposed under the name TIME in the scripting engine, and start out with a time of 300 game seconds. Example usage:

 TIME.stop();

 wait(30);

 TIME.start();

 This will cause the time to suddenly stop, then start up again after 30 seconds.

 Console access:

 sector.TIME.stop()

 This will stop the time.

 Methods

 start() - Resumes the countdown (assuming it isn't already started, in which case it does nothing).

 stop() - Pauses the countdown (assuming it isn't already stopped, in which case it does nothing)

 float get_time() - Returns the number of seconds left on the clock

 void set_time(float time_left) - Changes the number of seconds left on the clock

 Constants

 None

 SCRIPTED OBJECT

 A ScriptedObject is basically a SuperTux object that can be scripted to move around and animate.

 Instances

 ScriptedObjects are created by being defined in level files. Each scripted object will be exposed under its name to the scripting engine. Access through the console is realised via the sector object.

 Example

 Example of a definition:

 (scriptedobject

 (x 2291)

 (y 1275)

 (name "SUPERTUX")

 (sprite "images/creatures/tux_big/tux.sprite")

 (layer 100)

 (visible #t)

 (physic-enabled #t)

 (solid #t)

)

 The above object will be exposed under the name SUPERTUX in the scripting engine. Example usage:

 // This script will make tux look and walk left/right (this should make him appear // "upset")

 SUPERTUX.set_action("stand-right");

 wait(2);

 SUPERTUX.set_velocity(200,0);

 wait(0.3);

 SUPERTUX.set_velocity(0,0);

 wait(0.4);

 SUPERTUX.set_action("stand-left");

 SUPERTUX.set_velocity(-200,0);

 wait(0.3);

 The object can be accessed from the console sector.SUPERTUX.

 Methods

 set_action(string animation) - Activates the sprite's action specified in animation.

 get_action() - Returns the name of the sprite's current action.

 move(float x, float y) - Moves the object by x units to the right and y down relative to its current position.

 set_pos(float x, float y) - Basically identical to move, except its relativity to the sector origin.

 get_pos_x() - Returns the X coordinate of the object's position.

 get_pos_y() - Returns the Y coordinate of the object's position.

 set_velocity(float x, float y) - Makes the object move in a certain direction (with a certain speed) given by the x and y coordinates.

 get_velocity_x() - Returns the X coordinate of the object's velocity.

 get_velocity_y() - Returns the Y coordinate of the object's velocity.

 set_visible(bool visible) - Shows or hides the object according to the value of visible.

 is_visible() - Returns true if the object is visible, false otherwise.

 set_solid(bool solid) - Makes the object solid according to the value of solid.

 is_solid() - Returns true if the object is solid, false otherwise.

 get_name() - Returns the name of the object

 Constants

 None

 SCRIPTED SOUND

 Summary

 This class provides a very simple interface to the audio subsystem.

 Methods

 	play_music(string track_name)

 	Plays the selected music track (automatically prepending the path to the music folder and appending the .ogg extension).

 	play_sound(string sound_name)

 	Plays the sound specified in sound_name (that is identical to the filename of the sound without the .wav extension).

 Constants

 None

 TEXT

 This module provides access to methods responsible for displaying text on-screen.

 Instances

 An eponymous instance (Text) can be accessed from scripts. The console allows a sector.Text.

 Methods

 set_text(string text) - Sets the text string to be displayed to text.

 set_font(string font) - Sets the font of the text to be displayed to text. Currently valid values are gold, white, blue, gray, big and small.

 fade_in(float time) - Fades in the specified text for the next time seconds.

 fade_out(float time) - Just the opposite of fade_in.

 set_visible(bool visible) - Shows or hides the text abruptly (drastic counterpart to fade_in and fade_out).

 set_centered(bool centered) - If centered is true, the text will be centered on the screen. Otherwise, it will be left-aligned.

 set_pos(float x, float y) - Set offset of the text relative to anchor point.

 float get_pos_x() - Returns x offset of text relative to anchor point

 float get_pos_y() - Returns y offset of text relative to anchor point

 set_anchor_point(int anchor) - Set anchor point of text; one of the ANCHOR_* constants

 int get_anchor_point() - Returns current anchor point of text; one of the ANCHOR_* constants

 Constants

 None

 FLOATING IMAGE

 This class provides the ability to create, edit, and remove images floating in midair on the screen, such as the SuperTux logo. It is implemented as a wrapper around a sprite, so any sprite actions are applicable.

 Instances

 Floating Images are created in a script or from the console. Constructor:

 <floatimage> <- FloatingImage(string filename)

 Creates a FloatingImage from filename (which is relative to the data root).

 Example

 Definition of the logo in the menu level:

 (init-script "

 logo <- FloatingImage(\"images/objects/logo/logo.sprite\");

 logo.set_anchor_point(ANCHOR_TOP);

 logo.set_pos(0, 30);

 logo.set_visible(true);

 // Suspend (this is needed so that logo doesn't get deleted)

 suspend();

 ")

 The above creates a floating image name "logo", anchors it to the top, set its position relative to that anchor, and finally displays it instantaneously. To use this in the console, remove the init script and ending lisp tags.

 Methods

 void set_layer(int layer) - Moves this image to the layer layer. See src/video/drawing_context.hpp for the predefined layers and their values (note that you can't yet use these constants in your Squirrel code).

 int get_layer() - Returns: int; the layer the floating image is on.

 void set_pos(float x, float y) - Move the image in relation to the current anchor point.

 int get_x() - Get the image's X coordinate relative to the current anchor point.

 int get_y() - Get the image's Y coordinate relative to the current anchor point.

 int get_anchor_point() - Returns: int; the current anchor point

 void set_anchor_point(int anchor) - Set the image's anchor point. Possible values are represented by the ANCHOR_* constants.

 string get_action() - Returns the name of the current action of this image. (Only useful for sprites)

 set_action(string action) - Sets the current action of this image. (Only useful for sprites)

 bool get_visible() - Returns the current visibility of this image.

 set_visible(bool visible) - Shows or hides the image abruptly according to visible (drastic counterpart to fade_in and fade_out).

 fade_in(float time) - Fades in this image for the next time seconds.

 fade_out(float time) - Just the opposite of fade_in.

 Constants

 None

 PLATFORM

 A Moving platform that was given a name can be controlled by scripts. It is moving along a specified path.

 Instances

 An instance is created by being defined in a level. It may be accessed via its name from scripts and via sector.name from the console.

 Example

 Example of a definition:

 (platform

 (name "PLATFORM1")

 (running #f)

 (sprite "images/objects/platforms/vertical-wood.sprite")

 (path

 (mode "circular")

 (node

 (x 832)

 (y 800)

)

 (node

 (x 832)

 (y 704)

)

)

)

 The above object will be exposed under the name PLATFORM1 in the scripting engine. Example usage:

 PLATFORM1.goto_node(0);

 From console:

 sector.PLATFORM1.goto_node(1);

 Methods

 goto_node(int node_no) - advance until at given node, then stop.

 start_moving() - start advancing automatically

 stop_moving() - stop advancing automatically

 Constants

 None

 TILEMAP

 A Tilemap that was given a name can be controlled by scripts. The tilemap can be moved by specifying a path for it.

 Instances

 An instance is created by being defined in a level. It may be accessed via its name from scripts and via sector.name from the console.

 Example

 Example of a definition:

 (tilemap

 (name "niftymap")

 path

 (mode "circular")

 (node

 (x 832)

 (y 800)

 (time 10)

)

 (node

 (x 832)

 (y 704)

 (time 10)

)

)

 (width …)

 (height …)

 (tiles …)

 (solid #t)

)

 The above tilemap will be exposed under the name “niftymap” in the scripting engine. Example usage:

 niftymap.goto_node(1);

 niftymap.fade(0.0, 10);

 This will cause the tilemap to slowly move left, fading out as it goes, and disappear completely when it reaches its destination. Never fear, though; it is still there. From the console, you can enter:

 sector.niftymap.goto_node(0);

 sector.niftymap.fade(1.0, 15)

 The tilemap will then reverse its previous actions, ending up back where it started, but it will only reach full opacity 5 seconds after it stops.

 Methods

 goto_node(int node_no) - Move tilemap along path until at given node, then stop.

 start_moving() - Start moving tilemap

 stop_moving() - Stop tilemap at next node

 fade(float alpha, float seconds) - Start fading the tilemap to opacity given by alpha. Destination opacity will be reached after seconds game seconds. Also influences solidity.

 set_alpha(float alpha) - Instantly switch tilemap's opacity to alpha. Also influences solidity.

 float get_alpha() - Return the tilemap's opacity. Note that while the tilemap is fading in or out, this will return the current alpha value, not the target alpha.

 Constants

 None

 WIND

 A Wind object that was given a name can be controlled by scripts.

 Instances

 A Wind is instantiated by a definition in the level file. It can be accessed by scripts using its name and from the console as sector.name.

 Example

 Example of a definition:

 (wind

 (name "WIND1")

 (blowing #f)

 (speed-x 0)

 (speed-y -600)

 (acceleration 3)

 (width 32)

 (height 64)

 (x 783)

 (y 768)

)

 The above object will be exposed under the name WIND1 in the scripting engine. Example usage:

 WIND1.start();

 Console access:

 sector.WIND1.stop()

 Methods

 start() - start blowing

 stop() - stop blowing

 Constants

 None

 CANDLE

 A Candle object that was given a name can be controlled by scripts.

 Instances

 A Candle is instantiated via a definition in a level. It can be accessed by its name in scripts and via sector.name in the console.

 Example

 Example of a definition:

 (candle

 (name "CANDLE1")

 (burning #f)

 (x 1632)

 (y 1088)

)

 The above object will be exposed under the name CANDLE1 in the scripting engine. Example usage:

 CANDLE1.set_burning(true);

 Console usage:

 sector.CANDLE1.set_burning(false)

 Methods

 get_burning() - returns true if candle is lighted

 set_burning(bool burning) - true: light candle, false: extinguish candle

 Constants

 None

 THUNDERSTORM

 A Thunderstorm object that was given a name can be controlled by scripts.

 Instances

 A Thunderstorm is initialised by a definition in the level. It can be accessed via its name in scripts and sector.name in the console.

 Example

 Example of a definition:

 (thunderstorm

 (name "ELIZA")

 (running #f)

)

 The above object will be exposed under the name ELIZA in the scripting engine. Example usage:

 ELIZA.thunder();

 wait(2);

 ELIZA.lightning();

 In the console:

 sector.ELIZA.electrify()

 Methods

 start() - Start playing thunder and lightning at configured interval

 stop() - Stop playing thunder and lightning at configured interval

 thunder() - Play thunder

 lightning() - Play lightning, i.e. call flash() and electrify()

 flash() - Display a nice flash

 electrify() - Electrify water throughout the whole sector for a short time

 Constants

 None

 AMBIENT SOUND

 An ambient sound that was given a name can be controlled by scripts.

 Instance

 An AmbientSound is instantiated by placing a definition inside a level. It can then be accessed by its name from a script or via sector.name from the console.

 Example

 In the level file:

 (ambient_sound

 (name "niagara")

 (x 10)

 (y 20)

 (width 100)

 (height 51)

 (distance_factor 0.5)

 (distance_bias 0)

 (sample "waterfall.wav")

 (volume 1)

)

 In a script:

 niagara.set_pos(0, 0);

 In the console:

 sector.niagara.set_pos(18, 35)

 Methods

 set_pos(float x, float y) - Sets the position of the ambient sound

 get_pos_x() - Returns the x coordinate.

 get_pos_y() - Returns the y coordinate.

 Constants

 None

 WILL-O-WISP

 Will-o-Wisps, when given a name (and perhaps a path too), become scriptable, much like a platform or tilemap.

 Methods

 goto_node(int node_no) - Move willowisp to given node.

 start_moving() - start following the path

 stop_moving() - stop following the path

 set_state(string state) - set the willowisp state, can be:

 	
 stopped: willowisp doesn't move

 	
 move_path: willowisp moves along the path (call goto_node)

 	
 move_path_track: willowisp moves along path but catches Tux when he is near

 	
 normal: "normal" mode starts tracking tux when he is near enough

 	
 vanish: willowisp vanishes

 Constants

 None

 SECTOR

 The Sector class provides basic controlling functions for the current sector.

 Instances

 An instance under sector.settings is available from scripts and the console.

 Methods

 float get_ambient_light_red()

 float get_ambient_light_green()

 float get_ambient_light_blue()

 - Returns the specified channel of the ambient light color.

 set_ambient_light(float red, float green, float blue) - Sets the sector's ambient light to the specified color.

 set_gravity(float gravity) - Sets the sector's gravity.

 Constants

 None

OEBPS/Images/slide.jpg

