
C Optimizations

Code Alternatives
• XINT, Y, Z - Represent integers (either a literal or a variable)

From To Notes

(XINT/8)*16 XINT*2 or XINT<<1 Apply math properties (like 
simplification and distribution); apply 
bit-shifting when possible

(XINT/Y)>Z XINT>(Y*Z) Multiplication is faster than division

char and 
short

int Integers are processed more quickly 
than "char" or "short"

for(i=0; 
i<10;i++)

for(i=10;--i;) For-loops counting down to zero are 
faster than other for-loops

Global 
variable

Local variable Local variables are more quickly 
accessed than global variables

if-else switch-case Switch-constructs are faster than if-
else-constructs

signed_int/s
igned_int

unsigned_int/unsign
ed_int

Unsigned-division is faster than 
signed-division

TYPE VAR; const TYPE VAR; If a variable's value will not be 
changed, declare it as a constant

XINT*8 XINT<<3 Bit-shifting is less intensive than 
multiplication; this tip only works 
when multiplying by a power-of-2

XINT/10 XINT*0.1 Multiplication is faster than division

XINT/16 XINT>>4 Bit-shifting is faster than division;  this
tip only works when dividing by a 
power-of-2; 16 = 2^4

XINT%16 XINT&0x000f Hex integers and ANDing are 
processed more quickly

XINT%32 XINT&31 ANDing is less intensive than 
modulus; this tip only works when 
using a power-of-2 against the integer

i++ ++i Pre-increment is usually faster

NOTE: Some compilers may apply these optimizations themselves.
GNU-GCC Optimizations Flags

-fdata-sections Place Data items in separate section; improves 
reference locality in the instruction-space on some 
systems; executable may be larger; linker may have 
better dead code removal; may prevent gprof and 
debugging; do not use on static libraries

-ffast-math Sets the options -fno-math-errno, -funsafe-math-
optimizations, -ffinite-math-only, -fno-rounding-math, 
-fno-signaling-nans and -fcx-limited-range. Breaks 
IEEE and ISO rules.

-ffunction-sections Place functions in separate section; improves 
reference locality in the instruction-space on some 
systems; executable may be larger; linker may have 
better dead code removal; may prevent gprof and 
debugging; do not use on static libraries

-fgcse-lm Move loads out of loops

-fgcse-sm Move stores out of loops

-fstack-protector Provide extra code for checking for buffer-overflows 
and stack smashing attacks

-fstack-protector-all Provide extra code for checking for buffer-overflows; 
protection added to all functions

-floop-nest-optimize Enable the isl based loop nest optimizer. This is a 
generic loop nest optimizer based on the Pluto 
optimization algorithms.

-flto -fuse-linker-
plugin

Enable the link-time optimizer; do not use with 
-fwhole-program

-fmerge-all-constants Attempt to merge identical constants and identical 
variables

-fmodulo-sched Perform swing modulo scheduling

-fno-exceptions Disables exception handling

-fno-sanitize=all Disable sanitizers

-fno-stack-protector Disable stack protectors

-fselective-
scheduling 
-fselective-
scheduling2 -fsel-
sched-pipelining 
-fsel-sched-
pipelining-outer-
loops

Pipeline inner and outer loops

-funroll-all-loops Unroll all loops (even with unknown number of 
iterations); may cause the executable to run less 
quickly and increase size

-funroll-loops Unroll loops with known number of iterations at 
compile-time; may increase executable size

-funsafe-math-
optimizations

Float-point optimizations; breaks IEEE and ISO rules.

-funswitch-loops Move branches with loop-invariant-conditions out of 
the loop

-g0 Do not add debugging info

-gtoggle Turn off generation of debugging info

-march=* Compile and optimize code for using the special 
features of the specified CPU

-minline-all-
stringops

(x86) Allows extra string inlining; speeds up code that 
uses memcpy, memset, and strlen

-mlong-double-128 (x86) Set the size of "long double" to 128 bits

-mmmx and -msse4 (x86) Enable use of MMX instructions and  SSE4, 
respectively

-msse2avx (x86) Encode SSE instructions with VEX

-O3 Apply level-3 optimizations

-s Remove all symbol table and relocation info

-Wl,--gc-sections Enable garbage collection of unused input sections

-Wl,-O3 Use level-3 linker optimizations

-Wl,-s Strip all symbols during link-time

-Wl,-S Strip debugging symbols during link-time

-Wl,--no-whole-
archive

Only use needed symbols from archive files

-Wl,-x Strip local symbols during link-time

-Wl,-X Strip temporary local symbols during link-time

-Wl,-z,relro,-z,now non-PLT GOT and GOT are read-only

NOTE: See https://gcc.gnu.org/onlinedocs/gcc/
Strip

--discard-all Remove non-global symbols

--discard-locals Remove compiler-generated local symbols

--only-keep-debug Remove all symbols that would not be removed with "--
strip-debug"

--remove-
section=.comment

Remove ".comment" section; ".comment" stores compiler 
version information

--remove-
section=.note

Remove ".note" section; ".note" stores linker version 
information

--remove-section=* Remove the specified section

--strip-all Remove all symbols

--strip-debug Remove debugging symbols

--strip-dwo Remove DWARF .dwo sections

--strip-unneeded Remove unused symbols that are not need for relocation 
processing

--verbose List discarded symbols in the terminal

NOTE: See https://sourceware.org/binutils/docs/binutils/strip.html

Created by Devyn Collier Johnson <DevynCJohnson@Gmail.com> (2016) More cheatsheets at DCJTech.info


