C Optimizations

Code Alternatives

« XINT,Y, Z - Represent integers (either a literal or a variable)

-fno-sanitize=all

-fno-stack-protector

Disable sanitizers

Disable stack protectors

From To Notes

(XINT/8)*16 XINT*2 or XINT<<1 Apply math properties (like
simplification and distribution); apply
bit-shifting when possible

(XINT/Y)>Z XINT>(Y*Z) Multiplication is faster than division

char and int Integers are processed more quickly

short than "char" or "short"

for(i=0; for(i=10;--1i;) For-loops counting down to zero are

1<10;i++) faster than other for-loops

Global Local variable Local variables are more quickly

variable accessed than global variables

if-else switch-case Switch-constructs are faster than if-

signed int/s

unsigned_int/unsign

else-constructs

Unsigned-division is faster than

igned_int ed_int signed-division

TYPE VAR; const TYPE VAR; If a variable's value will not be
changed, declare it as a constant

XINT*8 XINT<<3 Bit-shifting is less intensive than
multiplication; this tip only works
when multiplying by a power-of-2

XINT/10 XINT*0.1 Multiplication is faster than division

XINT/16 XINT>>4 Bit-shifting is faster than division; this
tip only works when dividing by a
power-of-2; 16 = 24

XINT%16 XINT&OX000f Hex integers and ANDing are
processed more quickly

XINTS%32 XINT&31 ANDing is less intensive than
modulus; this tip only works when
using a power-of-2 against the integer

i++ ++1 Pre-increment is usually faster

NOTE: Some compilers may apply these optimizations themselves.
GNU-GCC Optimizations Flags

-fdata-sections

-ffast-math

-ffunction-sections

-fgcse-1m
-fgcse-sm

-fstack-protector

-fstack-protector-all

-floop-nest-optimize

-flto -fuse-linker-

plugin

-fmerge-all-constants

-fmodulo-sched

Place Data items in separate section; improves
reference locality in the instruction-space on some
systems; executable may be larger; linker may have
better dead code removal; may prevent gprof and
debugging; do not use on static libraries

Sets the options -fno-math-errno, -funsafe-math-
optimizations, -ffinite-math-only, -fno-rounding-math,
-fno-signaling-nans and -fcx-limited-range. Breaks
IEEE and ISO rules.

Place functions in separate section; improves
reference locality in the instruction-space on some
systems; executable may be larger; linker may have
better dead code removal; may prevent gprof and
debugging; do not use on static libraries

Move loads out of loops
Move stores out of loops

Provide extra code for checking for buffer-overflows
and stack smashing attacks

Provide extra code for checking for buffer-overflows;
protection added to all functions

Enable the isl based loop nest optimizer. This is a
generic loop nest optimizer based on the Pluto
optimization algorithms.

Enable the link-time optimizer; do not use with
-fwhole-program

Attempt to merge identical constants and identical
variables

Perform swing modulo scheduling

-fselective-
scheduling
-fselective-

scheduling2 -fsel-

sched-pipelining
-fsel-sched-
pipelining-outer-
loops

-funroll-all-loops

-funroll-loops

Pipeline inner and outer loops

Unroll all loops (even with unknown number of
iterations); may cause the executable to run less
quickly and increase size

Unroll loops with known number of iterations at
compile-time; may increase executable size

-funsafe-math-
optimizations

-funswitch-loops

Float-point optimizations; breaks IEEE and ISO rules.

Move branches with loop-invariant-conditions out of
the loop

_g@

-gtoggle

-march=*
-mipline-all-
stringops
-mlong-double-128

-mmmx and -msse4

-msse2avx
-03

-S

Do not add debugging info
Turn off generation of debugging info

Compile and optimize code for using the special
features of the specified CPU

(x86) Allows extra string inlining; speeds up code that
uses memcpy, memset, and strlen

(x86) Set the size of "long double" to 128 bits

(x86) Enable use of MMX instructions and SSE4,
respectively

(x86) Encode SSE instructions with VEX
Apply level-3 optimizations

Remove all symbol table and relocation info

-Wl, --gc-sections

-Wi, -03

Enable garbage collection of unused input sections

Use level-3 linker optimizations

-Wi, -s Strip all symbols during link-time

-Wi, -S Strip debugging symbols during link-time
-WL, --no-whole- Only use needed symbols from archive files
archive

-WL, -x Strip local symbols during link-time

-Wi, -X Strip temporary local symbols during link-time

-Wi,-z,relro, -z,now

non-PLT GOT and GOT are read-only

NOTE: See https://gcc.gnu.org/onlinedocs/gcc/

--discard-all
--discard-locals
--only-keep-debug
--remove-
section=.comment

--remove-
section=.note

--remove-section=*

--strip-all
--strip-debug

Strip

Remove non-global symbols
Remove compiler-generated local symbols

Remove all symbols that would not be removed with "--
strip-debug"

Remove ".comment" section; ".comment" stores compiler
version information

Remove ".note" section; ".note" stores linker version
information

Remove the specified section
Remove all symbols

Remove debugging symbols

-fno-exceptions

Disables exception handling

--strip-dwo

--strip-unneeded

--verbose

Remove DWARF .dwo sections

Remove unused symbols that are not need for relocation
processing

List discarded symbols in the terminal

NOTE: See https://sourceware.org/binutils/docs/binutils/strip.html

Created by Devyn Collier Johnson <DevynCJohnson@Gmail.com> (2016) More cheatsheets at DCJTech.info

